
spec™

X-Ray Diffraction Software

USER MANUAL and TUTORIALS

REFERENCE MANUAL

STANDARD MACROS GUIDE

FOUR-CIRCLE REFERENCE

ADMINISTRATOR’S GUIDE

HARDWARE REFERENCE

© 1989,1990,1992,1993,1994,1995,1996,1997,1998,1999,2000

© 2017

by Certified Scientific Software. All rights reserved.

Portions derived from appendices to the Doctoral thesis of Alan Braslau,

Department of Physics, Harvard University, 1988.

This is version 3 of the spec documentation, printed 16 July 2017,

describing features of release 6 of the software.

spec and C-PLOT are trademarks of Certified Scientific Software.
All other trademarks and registered trademarks are the property of their respective

owners.

The material in this manual is furnished for informational use only, is subject to

change without notice and should not be construed as a commitment by Certified Sci-

entific Software. Certified Scientific Software assumes no responsibility or liability
for any errors or inaccuracies that may appear in this manual. The software de-

scribed in this manual is furnished under license and may only be used or copied in

accordance with the terms of such license.

spec

X-Ray Diffraction Software

Certified Scientific Software

PO Box 390640 Cambridge, Massachusetts 02139 (617) 576-1610

FAX: (617) 497-4242 spec@certif.com

http://www.certif.com

MANUAL SUMMARY

USER MANUAL and TUTORIALS

A beginner’s guide to diffractometer operation and a tutorial on the basic fea-

tures of the spec user interface.

REFERENCE MANUAL

An overview of the internal structure of spec and a complete description of all

the built-in keywords, operators, grammar rules, commands and functions.

STANDARD MACROS GUIDE

Tips on writing macros, examples of macros from the standard library and a
detailed description of the structure of the standard scan macros.

FOUR-CIRCLE REFERENCE

Describes the special functions, variables and macros used to operate the stan-
dard four-circle diffractometer. The various modes are described, along with
the use of sectors, cut points and frozen angles. Also contains an explanation
of how to fit the orientation matrix when the lattice parameters are unknown.

ADMINISTRATOR’S GUIDE

How to install and update the spec package. Explains the hardware configu-

ration and motor settings file and how to use security features to protect mo-

tors from being moved by unqualified users.

HARDWARE REFERENCE

Information on the specific hardware devices and interfaces supported by

spec.

iv

TABLE OF CONTENTS

USER MANUAL AND TUTORIALS .. 1

Introduction ... 3

Beginner’s Guide to Diffractometer Operation 4

Starting Up .. 4

Using the Printer and Data Files .. 6

Setting Motor Positions and Moving Motors 7

Counting ... 11

Scans ... 12

Introduction To the spec User Interface ... 14

spec as a Calculator ... 14

Command Recall (History) ... 15

Controlling Output To the Printer and Data Files 17

Using Variables ... 18

Flow Control ... 20

Macro Facility ... 22

Command Files .. 25

Status and Help .. 26

UNIX Commands ... 27

Moving Motors ... 28

Dif fractometer Geometry ... 31

Counting ... 32

CAMAC, GPIB and Serial .. 34

Using spec with C-PLOT and Other UNIX Utilities 35

Standard Data File Format ... 35

Scans.4 .. 36

Contents ... 40

Showscans .. 41

REFERENCE MANUAL .. 43

Introduction ... 45

Inter nal Structure Of spec .. 45

Syntax Description ... 46

Comments .. 46

Doc Strings .. 46

v

Identifiers ... 46

Arrays .. 47

Keywords .. 53

Numeric Constants .. 54

String Constants ... 55

String Patterns and Wild Cards ... 55

Tilde Expansion ... 56

Command Recall (History) ... 56

Starting Up .. 57

Keyboard Interrupts ... 60

Cleanup Macros .. 61

Exiting .. 61

Variables ... 62

Operators ... 68

Flow Control ... 71

Grammar Rules .. 73

Built-In Functions and Commands .. 77

Utility Functions and Commands ... 78

Keyboard and File Input, Screen and File Output 88

Variables ... 100

Macros .. 101

String and Number Functions ... 107

Data Handling and Plotting Functions .. 110

Client/Server Functions ... 128

Hardware Functions and Commands ... 129

STANDARD MACRO GUIDE .. 151

Introduction ... 153

Some Tips ... 154

Utility Macros .. 157

UNIX Commands ... 157

Basic Aliases ... 157

Basic Utility Macros .. 158

Reading From Command Files ... 160

Saving To Output Devices ... 162

Start-up Macros ... 163

vi

Motor Macros .. 165

Counting Macros .. 170

Plotting Macros ... 172

Reciprocal Space Macros ... 173

Scan Macros .. 175

Scan Miscellany ... 175

Motor Scans ... 176

Basic Reciprocal Space Scans ... 177

Special Reciprocal Space Scans ... 177

Temperature Scans .. 178

Powder Mode .. 178

Customizing Scan Output ... 178

Temperature Control Macros .. 179

Printer Initialization Macros ... 183

The Scan Macros In Detail .. 184

Standard Data-File Format .. 192

FOUR-CIRCLE REFERENCE ... 195

Introduction ... 197

Dif fractometer Alignment .. 198

Orientation Matrix ... 200

Four-Circle Modes ... 201

Freezing Angles ... 204

Sectors .. 205

Cut Points ... 206

Four-Circle Files .. 207

Four-Circle Variables ... 207

Four-Circle Functions .. 209

Four-Circle Macros .. 210

Zone Macros .. 211

Least-Squares Refinement of Lattice Parameters 212

ADMINISTRATOR’S GUIDE .. 217

Introduction ... 219

Quick Install .. 219

Steps For Installing spec .. 219

vii

Extracting the Distribution ... 220

Installing the spec Program Files .. 221

Selecting the Hardware Configuration 224

Adding Site-Dependent Help Files ... 224

Adding Site-Dependent C Code ... 225

Updating spec ... 226

Installed Files .. 227

File Hierarchy .. 227

Accessing Protected I/O Ports On PC Platforms Running lin-

ux ... 228

The Configuration Editor ... 229

The Settings File .. 231

The Config File .. 231

Security Issues .. 237

Extra Protection .. 238

HARDWARE REFERENCE .. 239

Introduction ... 241

Inter face Controllers and General Input/Output 241

CAMAC Controllers ... 242

GPIB Controllers ... 245

VME Controllers .. 252

Serial (RS-232C) Ports ... 253

Generalized CAMAC I/O .. 253

PC Port Input/Output .. 254

Motor Controllers ... 255

Motor Controllers ... 255

Timers and Counters ... 277

Timers and Counters .. 277

Multichannel Data Acquisition Devices ... 286

MCA Devices ... 286

REFERENCES ... 293

INDEX .. 294

viii

MANUAL PAGE ... 305

ix

PREFACE
For the (In-Progress) Version 3 Manual

It’s been eighteen years since the last significant spec manual update. In the preface

for the 1999 edition, I apologized for the work-in-progress nature of the manual, and

hoped to have a completely up-to-date version "someday in either this or the next

century." We are now well into the next century, and although not yet completely up-

to-date, the process of updating is underway.

Besides updated content, the PDF version of the manual now contains a PDF outline

table of contents and active links within the document. Figuring out how to do that

was a major step forward and motivated this current update project.

The updated manual intends to describe the current spec release 6 from September

2012 and beyond. References to when features were added to spec releases 3 (1993

to 1996), releases 4 (1996 to 2001) and releases 5 (2001 to 2012) will be eliminated.

Presently, effort is being made to bring the Reference Manual and Administrator’s

Guide up to date. The Four-Circle Reference has aged well and has needed minor up-
dates only. However, the User Manual and Tutorials could use a major rewrite, and
the Standard Macros Guide does not reflect the current form of many of the standard
macros. The Hardware Reference describes hardware that may still be supported,
but is rather obsolete, such as CAMAC devices and ISA PC boards. Its fate is yet to
be decided.

Since the version of the manual that has been available for download for the last
many years is so badly out of date, rather than wait for this rewrite to be complete,
this work-in-progress version will be made available for download, with much more
frequent updates. At any rate, this version of the manual should certainly give you
the flavor of spec. For details on exactly how macros are constructed, you should
probably consult the source code for the macros in your current distribution. The
most recent on-line changes help files should be perused for the most up-to-date infor-

mation on new features.

Also, please note that our website at http://www.certif.com contains downloadable

PDF versions of this manual (both letter-size and A4!), and will surely be updated

with more interim versions, before the next official and complete version is available.

Finally, if there are questions or ambiguities that cannot otherwise be resolved, by all
means contact us at CSS for the final word.

Thanks for your patience.

G.S. May 10, 2017

x

http://www.certif.com

USER MANUAL AND TUTORIALS

2 USER MANUAL AND TUTORIALS

Introduction

spec is a UNIX-based software package for instrument control and data acquisition

widely used for X-ray diffraction at synchrotrons around the world and in university,

national and industrial laboratories. Developed in 1986 for X-ray diffraction experi-

ments, spec’s portability, flexibility and power are winning it increasing application

as general-purpose data-acquisition software. spec is available on a wide range of

UNIX platforms and supports numerous hardware configurations. Features include:

• Built-in code to regulate motor controllers and detection electronics using VME,

CAMAC, GPIB, RS-232, PC-board and ethernet-socket interfaces.

• Generalized access for VME, CAMAC, GPIB, RS-232, PC I/O ports and socket I/O

to read from and write to user devices.

• Sophisticated user interface with command interpreter, complete with variables,

looping and flow control, allowing for creative experiment automation.

• Language uses a familiar C-like syntax.

• A command-file facility allows complicated or commonly used command sequences
to be immediately called up.

• An easy-to-use macro facility, with a large library of predefined macros. Macros
can be readily modified with any text editor to suit experiments.

• Scans, data-file formats, etc. are not built into the compiled program but defined
as easily modified macros.

• High-resolution, real-time data plots are available on X Windows and Sunview
systems.

• Macro libraries and geometry-calculation routines support two-, four-, five- and

six-circle diffractometers, kappa diffractometers, many liquid surface X-ray
diffractometers and other configurations. The standard four-circle diffractometer
supports many advanced modes and includes features such as least-squares re-

finement of the lattice parameters. New geometry configurations can be easily

created.

• Hardware configuration employs a spread-sheet-style interface to select device
names, addresses, CAMAC slot assignments, motor parameters, etc.

• Security features let site administrators restrict access to particular motors (such

as those at a synchrotron beam-line front end).

• Available for most UNIX Systems, widely used on Linux PC platforms and UNIX

workstations, including SUN (both SunOS 4.x and Solaris 2.x), HP 700 series and

IBM RS/6000.

USER MANUAL AND TUTORIALS 3

Beginner’s Guide to Diffractometer Operation

Starting Up

In this introduction to the basics of spec, as in most of this manual, the standard

four-circle diffractometer configuration is used in the examples. Other specialized

diffractometer geometries are available, but all configurations function in a similar

manner.

To start up the four-circle version of the spec package from a UNIX shell, type:

% fourc

(In this manual, input from the keyboard will be indicated in bold-faced type.) You

will see output similar to the following:

Welcome to "spec" Release 6.05.02
Copyright (c) 1987-2017 Certified Scientific Software

All rights reserved
[2017-01-29-101010]

(Portions derived from a program developed at Harvard University.)
(Linked with BSD libedit library for command line editing.)

Using "/usr/local/lib/spec.d" for auxiliary file directory (SPECD).

Getting configuration parameters from "SPECD/fourc/config".

BUsing four-circle configuration.

=
Type h c hanges for info on latest changes.
Browse to http://www.certif.com for complete documentation.
=

Reading file "SPECD/standard.mac".
Warning: No open data file. Using "/dev/null".
Type "mstartup" to initialize data file, etc.

Reading file "SPECD/four.mac".
Warning: Using default lattice constants.
(UB recalculated from orientation reflections and lattice.)

1.FOURC>

The welcome message identifies the geometry configuration (fourc) and the release

number of the program (6.05.02). The directory name that contains spec’s auxil-

4 USER MANUAL AND TUTORIALS

iary files is then identified (/usr/local/lib/spec.d). That name is assigned to

spec’s interval variable named SPECD.

A configuration file is then read to obtain the hardware configuration (hardware de-

vices and types, stepper motor parameters, etc.). Various messages are printed as the

specific hardware devices are initialized. During the start-up hardware configura-

tion, spec reads the current diffractometer angle settings from the motor-controller

hardware registers and verifies that they agree with the positions stored in a settings

file associated with the diffractometer. If there is a discrepancy, you will see output

similar to the following:

E500 at 0 steps (.1 user), spec at 24431 steps (12.3155 user)
on motor 1, slot 6, "Theta". Modify the E500 registers?

The E500 is one of many different motor controllers available. Since the controller

shows 0 steps, it probably has been powered down, and the program value is probably

correct. Type yes or y to modify the controller registers. If you are uncertain what to

do, the safest thing is to immediately terminate the program without updating the
motor settings files by typing the quit control character (usually a ˆV on IBM AIX
platforms and a ˆ\ on most others), and then seek help.

A news file is displayed each time the program starts up. In this example, the
Spec Hot Line message is from that file. The spec administrator can keep the news
file up-to-date with messages for local users.

The first time you run spec, standard command files from the auxiliary file directory
are automatically read (SPECD/four.mac and SPECD/standard.mac). These files con-
tain the standard macro definitions used to operate the diffractometer. There are
also some commands that assign default values to the variables used in the macros.
The displayed warning message about no data file being open is produced by these
standard macros, along with the message that suggests running the startup macro.

Finally, you are prompted for input. The prompt indicates the geometry configura-

tion and includes a prepended command sequence number that is used with the com-
mand recall (or history) feature. You can exit the program by typing a ˆD (control-D)
at the prompt:

1.FOURC> ˆD
Bill’s state is stored for /dev/console.

%

The closing message confirms that your spec state is saved. The spec state consists

of all your current macro definitions, variables, open output files and command his-
tory. Each user has a unique state associated with a particular terminal. Your saved

state is automatically restored the next time you run spec from the same terminal.
(See page 59 in the Reference Manual to see how to start spec with a state from

USER MANUAL AND TUTORIALS 5

another user or terminal.)

spec is built around an interpreter that has a C-like syntax and recognizes over a

hundred built-in commands and function names. However, you will typically be in-

voking the standard macros. These macros are written to do specific jobs using the

built-in commands and functions and require minimum keyboard input. If you just

want to move motors, count photons and do scans, you will only have to learn the few

standard macros presented in this Beginner’s Guide.

Using the Printer and Data Files

The standard macros in spec are designed to keep records of the experiment in

progress on a printer and in a data file, although neither is required. The startup
macro will prompt for a printer and a data file, along with asking for many other pa-

rameters and options. For now, enter information just for the printer and data file

and accept the current values for the other parameters.

1.FOURC> startup

Enter <return> for no change in the displayed parameters.
The names of start-up macros that can be invoked separately
are shown in parenthesis above a set of queries.
Type ˆC to return to command level without finishing.
(Interrupting one of the specialized start-up macros will
likely undo any changes entered for its associated parameters.)

(newsample)
Title for scan headers (fourc)? cu 110

(newfile)
Data file (/dev/null)? cu110/94_01_31.a
Using "cu110/94_01_31.a". Next scan is number 1.
Last scan # (0)? <return>

Use a printer for scan output (NO)? y
Printer device (/dev/null)? /dev/lp

(And so on ...)

2.FOURC>

When prompting for input, spec generally displays the default or current response in

parentheses. Simply hitting <return> makes that selection.

You can use the newfile macro directly to open (or reopen) a data file. Usage is new-
file [filename [scan_number]] . (As is the convention in this manual, the
square brackets indicate optional arguments, and the Courier Oblique typeface de-

notes variable parameters you supply.) The optional argument scan_number is the

6 USER MANUAL AND TUTORIALS

number of the last scan and should be specified when appending to an existing data

file.

The standard spec macros allow you to use a printer to record scan data and other

status information. Not all users use a printer, though, as the information is also

stored in data files.

When using a printer, spec generates output for a 132-column wide format. Most

spec users use 8½" wide paper with their printer set to compressed mode. The

initfx macro sends the correct programming sequence to put an Epson printer into

compressed mode. The initdw macro does the same for a Decwriter. (Other macros

are available for other printers − type lsdef init* from spec for a list.) You could

also use printer switches to select compressed mode.

Also, when using the printer, you should set the top-of-form position correctly. That

wa y, each scan will begin at the top of a new page, and it will be much easier to locate

scans when thumbing through the data printout later.

Use the comment macro (also available as com) to insert arbitrary comments in the
data file and on the printer. For example,

2.FOURC> com Absorber inserted in front of detector

Mon Feb 15 01:41:52 1994. Absorber inserted in front of detector.

3.FOURC>

Setting Motor Positions and Moving Motors

When spec is used to control an X-ray diffractometer, the wh (where) macro is avail-
able to show the positions of the most interesting angles and the diffractometer posi-
tion in reciprocal space coordinates. With the four-circle diffractometer, the output is
as follows:

3.FOURC> wh

H K L = 0 0 1
Alpha = 30 Beta = 30 Azimuth = 90
Omega = 0 Lambda = 1.54

Two Theta Theta Chi Phi
60.0000 30.0000 -90.0000 0.0000

4.FOURC>

The incident and scattered angles for surface diffraction (ALPHA and BETA), the AZ-
IMUTH angle used in advanced modes (see the Four-Circle Reference) and the incident

USER MANUAL AND TUTORIALS 7

X-ray wavelength, LAMBDA, are also listed.

The angular positions listed above are the user angles. You set user angles during

diffractometer alignment to satisfy the premises of the geometry calculations, such as

the positions of the zeroes of the angles. Dial angles keep track of hardware limits

and prevent complete loss of angles from alignment errors or computer failure. The

dial angles are generally made to agree with a physical indicator on each motor, such

as a dial. User angles are related to the dial angles through the equation:

user = sign × dial + offset

Redefining a user angle changes the internal value of offset. Dial angles are directly

proportional to the values contained in the hardware controller registers. The sign of

motion is set in the configuration file by the spec administrator and normally isn’t

changed.

The set_dial motor position macro is used to set the dial position of a motor. The

argument motor is the motor number or mnemonic. All motors have short mnemon-
ics, such as tth , th , chi , and phi .

4.FOURC> set_dial tth 24.526

Mon Feb 15 01:42:10 1994. Two Theta dial reset from 0 to 24.526.

5.FOURC>

The set motor position macro is used to set the user position of a motor (i.e., to
change offset). If you had a slit motor with mnemonic ts1 , you might enter

5.FOURC> set ts1 .5

Mon Feb 15 01:43:31 1994. Top Slit1 reset from 0 to .5.

6.FOURC>

The wa (where all) macro lists both the user and dial positions of all configured mo-
tors.

6.FOURC> wa

Current Positions (user, dial)
Two Theta Theta Chi Phi Top Slit1 Bot Slit1

tth th chi phi ts1 bs1
24.6310 12.3155 90.0000 0.0000 0.5000 -0.5000
24.5260 12.2155 89.7865 0.0950 0.5000 -0.5000

7.FOURC>

8 USER MANUAL AND TUTORIALS

spec also keeps track of software motor limits. These limits are always checked be-

fore any motors are moved. The lm macro lists these limits in both user and dial an-

gles, as well as the current positions of the motors.

7.FOURC> lm

USER Limits (high, current, low):
Two Theta Theta Chi Phi Top Slit1 Bot Slit1

180.1050 90.1000 135.2135 179.9050 5.0000 0.0000
24.6310 12.3155 90.0000 0.0000 0.5000 -0.5000

-179.8950 -89.9000 -134.7865 -180.0950 0.0000 -5.0000

DIAL Limits (high, current, low):
Two Theta Theta Chi Phi Top Slit1 Bot Slit1

180.0000 90.0000 135.0000 180.0000 5.0000 0.0000
24.5260 12.2155 89.7865 0.0950 0.5000 -0.5000

-180.0000 -90.0000 -135.0000 -180.0000 0.0000 -5.0000

8.FOURC>

The macro set_lm motor low high changes the software limits for a single motor.
The values for low and high are given in user angles (although they are stored inter-
nally in dial angles).

The wm motor [motor ...] macro lists complete information for up to six motors
given as arguments.

8.FOURC> wm tth th

Two Theta Theta
tth th

User
High 180.1050 90.1000
Current 24.6310 12.3155
Low -179.8950 -89.9000

Dial
High 180.0000 90.0000
Current 24.5260 12.2155
Low -180.0000 -90.0000

9.FOURC>

Once the diffractometer has been aligned, you can move to any allowed reciprocal
space position using the br H K L (Bragg) macro.

USER MANUAL AND TUTORIALS 9

9.FOURC> br 2 0 0

10.FOURC> wh

H = 2 K = 0 L = 0
ALPHA = -25.251 BETA = 25.251 AZIMUTH = 90 LAMBDA = 1.54

Two Theta Theta Chi Phi
50.5030 25.2515 90.0000 0.0000

11.FOURC>

You can see where the motors would move for particular values of (H, K, L) using the

ca H K L (calculate) macro.

11.FOURC> ca 2 1 1

Calculated Positions:

H = 2 K = 1 L = 1
ALPHA = -25.252 BETA = 25.252 AZIMUTH = -90 LAMBDA = 1.54

Two Theta Theta Chi Phi
62.9960 31.4980 54.7355 135.0000

12.FOURC>

Conversely, spec will display the (H, K, L) that corresponds to a particular set of mo-
tor positions using the ci tth th chi phi (calculate inverse) macro.

A single motor may be moved in real space using the mv motor position macro. For
example,

12.FOURC> mv tth 50

13.FOURC>

will move the 2θ motor to 50°. You are prompted for more input immediately, even
though the motors are still moving.

You can tell when the motor has stopped moving by using the w macro. The program

will pause until the motor has stopped moving and then generate a beep on the ter-

minal. Alternatively, you can have the motor position displayed on the screen as it is
moving by invoking the umv (updated-move) macro instead of mv. To stop the motors
before they have finished moving, type the interrupt character, usually a ˆC .

You can use the mvr motor relative_position macro to move a motor relative to

its current position.

10 USER MANUAL AND TUTORIALS

13.FOURC> mvr th 1

14.FOURC>

will move θ by one degree.

The tw motor delta (tweak) macro is useful when lining up the diffractometer or

when searching for the beam.

14.FOURC> tw th .1
Indicate direction with + (or p) or - (or n) or enter
new step size. Type something else (or ˆC) to quit.

th = 26.2515, which way (+)? <return>
th = 26.3515, which way (+)? <return>
th = 26.4515, which way (+)? <return>
th = 26.5515, which way (+)? <return>
th = 26.6515, which way (+)? -
th = 26.5515, which way (-)? <return>
th = 26.4515, which way (-)? ˆC

15.FOURC>

Each time you hit <return> , the motor moves delta in the plus or minus direction.

Counting

You count photons using the ct macro. Without arguments, this macro counts for the
time set by the variable COUNT, which is typically one second. According to the con-
vention used in the standard macros, positive count times indicate counting to sec-
onds and negative count times indicate counting to monitor counts.

15.FOURC> ct 10

Mon Feb 15 01:45:12 1994

Seconds = 10
Monitor = 389387 (38939/s)

Detector = 192041 (19204/s)

16.FOURC> ct -40000

Mon Feb 15 01:45:28 1994

Seconds = 1.027
Monitor = 40000 (38948/s)

Detector = 19756 (19237/s)

17.FOURC>

USER MANUAL AND TUTORIALS 11

Type a ˆC to abort counting. The macro show_cnts will display the current scaler

contents. The uct macro will update the screen with the current scaler contents dur-

ing the counting period.

Scans

Scans in spec are built of macros. Many different standard scans are available. Ab-

solute-position motor scans such as ascan , a2scan and a3scan move one, two or

three motors at a time. Relative-position motor scans are lup (or dscan), d2scan and

d3scan . The relative-position scans all return the motors to their starting positions

after the last point. Two motors can be scanned over a grid of points using the mesh
scan.

Simple reciprocal space scans are hscan , kscan and lscan . The hklscan macro

moves the diffractometer along an arbitrary straight line in reciprocal space. Scans

such as hkcircle or hkradial describe other trajectories. The hklmesh scan mea-
sures intensities over a grid of reciprocal-space points.

If you do not know the arguments for a scan or how a scan is used, you can call up its
usage by typing its name with no arguments.

17.FOURC> ascan
Usage: ascan motor start finish intervals time

18.FOURC> hscan
Usage: hscan start finish intervals time

19.FOURC>

When the program does a scan such as hscan , the following happens: the program
waits for motors to stop moving, calculates (H, K, L) for the current position and then

scans H, holding K and L fixed for a reciprocal space scan along the H direction.

19.FOURC> hscan .9 1.1 20 1
Total 21 points, 21 seconds

Scan 20 Thu Feb 09 20:04:30 2017 file = cu110/90_01_31.a
hklscan 0.9 1.1 0 0 0 0 20 1

H K L Detector Monitor Seconds
0 0.9 0 0 2604 38939 1
1 0.91 0 0 3822 38820 1
2 0.92 0 0 5295 39034 1
3 0.93 0 0 7259 38789 1
4 0.94 0 0 9298 38804 1
5 0.95 0 0 11505 38909 1
6 0.96 0 0 13907 38821 1
7 0.97 0 0 16022 39110 1

12 USER MANUAL AND TUTORIALS

8 0.98 0 0 17603 38839 1
9 0.99 0 0 18834 38950 1

10 1 0 0 19103 38917 1
11 1.01 0 0 18701 39013 1
12 1.02 0 0 17652 39135 1
13 1.03 0 0 16011 38836 1
14 1.04 0 0 13848 38901 1
15 1.05 0 0 11585 38933 1
16 1.06 0 0 9302 39022 1
17 1.07 0 0 7237 39205 1
18 1.08 0 0 5324 38957 1
19 1.09 0 0 3780 38801 1
20 1.1 0 0 2580 38975 1

Peak at 1 is 19103 FWHM at 1 is 0.05 COM is 1
Sum = 231272 Ave.Mon./Time = 38921 Ave.Temp. = 0C
28 second

20.FOURC>

The output shown is what would generally appear on the screen. More detailed out-
put is sent to the printer. Also, a complete scan header and the data points are
stored in the data file. A rudimentary plot can be produced on the printer at the end
of the scan. Typing splot will produce a plot of the data on the screen. Typing pts
will list the data on the screen.

The setplot macro configures how the data will be displayed during and at the con-
clusion of scans.

20.FOURC> setplot

Do real-time screen plots during scans (NO)? y
Do screen plot after scan (YES)? <return>
Do printer plot after scan (NO)? y

21.FOURC>

Scans can be aborted by typing ˆC . Typing scan_on restarts an aborted scan at the

current point.

USER MANUAL AND TUTORIALS 13

Introduction To the spec User Interface

spec as a Calculator

In some respects, the spec user interface behaves like a BASIC language interpreter

that uses the C language syntax. For example, you can easily print strings and the

results of arithmetic expressions:

1.FOURC> p 2+2, sqrt(3), "2ˆ16 =", 1<<16
4 1.73205 2ˆ16 = 65536

2.FOURC>

(The p macro is defined as print , a built-in command.) You do not need to search for

your calculator, as all the standard operators and functions are available.

The arithmetic operators (= , ∗ , / , %, + , − , ++ , − − , += , −= , ∗= , /= , %=), the relational

operators (> , < , <= , >= , == , !=), the boolean operators (! , &&, ||), the bitwise opera-
tors (>> , << , ˜ , & , ˆ , | , >>= , <<= , &= , ˆ= , |=) and the ternary operator (? :) are all
available. Parentheses can be used for grouping within expressions. See the Refer-

ence Manual for a description of all the operators and their rules of precedence.

The most useful standard C math functions are included, such as sin() , cos() ,
tan() , asin() , acos() , atan() , exp() , log() , log10() , pow() , sqrt() , and
fabs() . Conversions functions such as deg() and rad() convert between degrees
and radians, while bcd() and dcb() convert between decimal and binary-coded deci-
mal. A rand() function to return random numbers is also provided.

Numbers can be entered in decimal, octal or hexadecimal notation, just as in C.

2.FOURC> p 100, 0100, 0x100
100 64 256

3.FOURC>

Special string functions also exist. The date() function provides the current date
and time as a string:

3.FOURC> p date()
Mon Feb 15 02:13:13 1994

4.FOURC>

The date() function can also take an argument that is the number of seconds from

the UNIX epoch.

14 USER MANUAL AND TUTORIALS

4.FOURC> p date(1e9)
Sat Sep 8 21:46:40 2001

5.FOURC> p date(0)
Wed Dec 31 19:00:00 1969

6.FOURC> p i nt(time()), date(time())
729760917 Mon Feb 15 02:21:57 1994

7.FOURC>

The second example shows the (Eastern Standard Time) moment of the UNIX epoch.

The function time() returns the number of seconds since that moment, including a

fractional part with a resolution determined by the system clock. The difference of

subsequent calls to time() can, for example, give a reasonable elapsed time for each

point in a scan.

The function input() reads a string from the keyboard. An optional argument will

be printed first. For example, a macro or command file might prompt you for infor-
mation:

7.FOURC> TITLE = input("Please enter a title: ")
Please enter a title: Au (001) Sample #1

8.FOURC>

Other string functions such as index() , substr() , length(s) and sprintf(for-
mat , [args]) are also available. See the Reference Manual for details.

Command Recall (History)

A command recall (or history) feature lets you recall previously typed commands.
spec’s command recall implements a subset of the features of the standard csh his-

tory mechanism. When using command recall, note that only keyboard input is

saved, command recall cannot be used in command files, and the command recall
characters must occur at the beginning of a new line.

When you run spec interactively, a command sequence number is always prepended

to the prompt. The history command lists by number the commands that can be re-

called. (At present, only the most recent 1000 commands are available for recall.)

USER MANUAL AND TUTORIALS 15

8.FOURC> history
1 p 2+2, sqrt(3), "2ˆ16 =", 1<<16
2 p 100, 0100, 0x100
3 p date()
4 p date(1e9)
5 p date(0)
6 p time(), date(time())
7 TITLE = input("Please enter a title: ")
8 history

9.FOURC>

To use command recall, type !! or !-1 to recall the previous command. Typing !-2
will recall the second previous command. Type !2 to recall command number 2.

Also, !TI will recall the last command beginning with the string TI .

9.FOURC> !2
p 100, 0100, 0x100
100 64 256

10.FOURC>

Notice that the recalled command is first printed and then executed.

Recalled commands can be modified by appending text.

10.FOURC> !p , "= 100, 0100 and 0x100."
p 100, 0100, 0x100 "= 100, 0100 and 0x100."
100 64 256 = 100, 0100 and 0x100.

11.FOURC>

Arbitrary substitutions to recalled commands are allowed using the :s/left/right/
modifier, as in

11.FOURC> !-1:s/./,respectively./
p 100, 0100, 0x100 "= 100, 0100 and 0x100, respectively."
100 64 256 = 100, 0100 and 0x100, respectively.

12.FOURC>

You can also use a circumflex ˆ to make a substitution on the most recent command,

just as with the standard UNIX csh.

12.FOURC> ˆ=ˆareˆ
p 100, 0100, 0x100 "are 100, 0100 and 0x100, respectively."
100 64 256 are 100, 0100 and 0x100, respectively.

13.FOURC>

16 USER MANUAL AND TUTORIALS

Controlling Output To the Printer and Data Files

spec’s output facility is unusual. Output files and devices, including the screen, are

turned on or off for output. The output of each printing command, whether gener-

ated by a user command or internally, is sent to all the turned-on devices.

open("filename") opens a file or device to append output. The current contents of

existing files are never erased. The on("filename") function turns on printing to

the file or device and opens the file if open() was not previously called. The

off("filename") function ends printing to that file or device, and close("file-
name") closes the file or device and removes the name from the program’s table of file

pointers. The name "tty" is special when used as an argument to these functions. It

always refers to your current terminal.

Whenever there is an error or a ˆC interrupt, all files (except log files) are turned off,

and output to the terminal is turned on. A log file is used for debugging purposes and

is any file that begins with log . Output to all on files and devices is automatically
copied to a log file.

To get the status of all open files, type:

13.FOURC> on()
‘tty’ has output ON.
‘/usr/alan/default.dat’ has output OFF.
‘/dev/null’ has output OFF.

14.FOURC>

If you change spec’s current directory, you can reference open files either by the
name with which the files were opened or by the correct path name relative to the
new directory.

The standard macros use three output devices: the screen, a printer and a data file.

The ont , offt , onp , offp , ond and offd macros are usually used to simplify control-
ling output to these devices, where ont is defined as on("tty") , etc. Typical usage is

ond; offt; printf("#S %d\n", ++SCAN_N); offd; ont

Often, printing commands are placed between onp and offp to direct the output both

to the screen and the printer. For instance,

1.FOURC> onp; p "This is also being printed on the printer."; offp
This is also being printed on the printer.

2.FOURC>

Formatted printing is available using the printf() and fprintf() functions. The

USER MANUAL AND TUTORIALS 17

format specifications are the same as for the C-language routine and can be found in

the printf() write-up in any C reference manual.

2.FOURC> printf("The square root of two is %.12g.\n", sqrt(2))
The square root of two is 1.41421356237.

3.FOURC>

Using Variables

spec’s variables can be used as both strings and as double-precision floating-point

numbers. Variables are not declared, but come into existence through usage. Some

variables are built-in, though, and of these, some have preassigned values. The vari-

able PI is an example.

3.FOURC> {
4.more> k = 2 * PI / 1 .54
5.more> print k
6.more> }
4.07999

7.FOURC>

Curly brackets ({ and }) are used to delimit a block to be interpreted together, since
variables are local to interpreted blocks. Notice that the prompt indicates the pro-
gram is expecting further input before interpreting and taking action.

7.FOURC> print k
0

8.FOURC>

The value of k disappeared because k was local to the previous statement block. New
variables start off with a value of zero.

A variable may be declared global to hold its value outside an interpreted block:

8.FOURC> global Lambda CuKa

9.FOURC> Lambda = 1.54

10.FOURC> CuKa = "Copper K-alpha"

11.FOURC> print CuKa, "=", Lambda
Copper K-alpha = 1.54

12.FOURC>

18 USER MANUAL AND TUTORIALS

By convention, global variables in the standard macro package use capital letters or

begin with an underscore. Variables can be made constant to protect them from ac-

cidental reassignment,

12.FOURC> constant Lambda 1.54

13.FOURC> Lambda = 1.7
Trying to assign to a constant ‘Lambda’.

14.FOURC>

Variables defined as constant are automatically global.

Most built-in variables with preassigned values are of the immutable type and cannot

be changed at all:

14.FOURC> PI = 1
Trying to assign to an immutable ‘PI’.

15.FOURC>

Some built-in variables, such as DEBUG, can be changed by the user. Another vari-
able, the A[] array, may be filled by the program with the current motor positions or
can be set to target motor positions. For a list of all current symbols, type:

15.FOURC> syms
(B uilt-In/Global/Local Array Number String Constant/Immutable)

8256 A (BA...) 80 SLIT_W (G.NS.) 80 _f1 (G.NS.)

96 ADMIN (G..S.) 96 SPEC (B..SI) 80 _f2 (G.NS.)

80 BG (G.N..) 112 SPECD (B..SI) 80 _f3 (G.NS.)

96 COLS (B.N..) 80 TEMP_CS (G.NS.) 80 _fx (G.NS.)

80 COUNT (G.N..) 80 TEMP_SP (G.NS.) 80 _g1 (G.NS.)

96 COUNTERS (B.N.I) 96 TERAMP_MIN (G.N..) 80 _g2 (G.NS.)

96 COUNT_TIME (G.NS.) 96 TERM (B..S.) 96 _hkl_col (G.N.C)

128 CP_FILTER (G..S.) 80 TIME (G.NS.) 80 _m (G.NS.)

112 CWD (B..SI) 96 TIME_END (G.NS.) 80 _m1 (G.NS.)

128 DATAFILE (G..S.) 96 TITLE (G..S.) 80 _m2 (G.NS.)

112 DATA_DIR (G..S.) 80 T_AV (G.NS.) 80 _m3 (G.NS.)

80 DATE (G.NS.) 80 T_HI_SP (G.N..) 80 _n1 (G.NS.)

80 DEBUG (B.N..) 80 T_L (G.NS.) 80 _n2 (G.NS.)

80 DEGC (G.NS.) 80 T_LO_SP (G.N..) 80 _nm (G.NS.)

80 DEGC_SP (G.NS.) 2736 U (BA...) 80 _numgeo (G.N..)

80 DET (G.N..) 1056 UB (BA...) 80 _pmot (G.NS.)

80 DOFILE (G.NS.) 592 UNITS (GA...) 96 _pmotflag (G.NS.)

96 DO_DIR (G..S.) 80 UPDATE (G.N..) 96 _pre_chk (G.N..)

80 EPOCH (G.N.C) 96 USER (B..SI) 80 _pwid (G.NS.)

80 FPRNT (G.NS.) 96 USER_CHK_ACQ (G.NS.) 80 _reg_f (G.NS.)

1296 G (BA...) 96 USER_CHK_COUNT (G.NS.) 80 _reg_i (G.NS.)

96 GS_file (G..S.) 96 USER_CHK_MOVE (G.NS.) 80 _reg_n (G.NS.)

80 GS_scan (G.N..) 80 VFMT (G.NS.) 80 _reg_s (G.NS.)

80 GS_xcol (G.N..) 80 VPRNT (G.NS.) 112 _reg_scan (G..S.)

80 GS_ycol (G.N..) 80 X_L (G.NS.) 80 _reg_t (G.NS.)

USER MANUAL AND TUTORIALS 19

96 GTERM (B..S.) 80 Y_L (G.NS.) 80 _s (G.NS.)

80 HEADING (G.NS.) 816 Z (BA...) 80 _s1 (G.NS.)

112 HOME (B..SI) 80 _1 (G.N..) 80 _s2 (G.NS.)

96 MAIL (G..S.) 80 _2 (G.NS.) 80 _s3 (G.NS.)

80 MODES (G.N.C) 80 _3 (G.NS.) 80 _sleep (G.NS.)

80 MON (G.N..) 80 _4 (G.NS.) 80 _stime (G.NS.)

96 MON_RATE (G.NS.) 80 _5 (G.NS.) 80 _stype (G.NS.)

80 MOTORS (B.N.I) 80 _6 (G.NS.) 80 _sx (G.NS.)

80 MT_AV (G.NS.) 80 _7 (G.NS.) 96 _upd_flg (G.NS.)

80 NPTS (G.NS.) 80 _8 (G.NS.) 80 bg_m (G.NS.)

80 PFMT (G.NS.) 80 _9 (G.NS.) 80 bg_pts (G.N..)

80 PI (B.N.I) 80 _LAMBDA (G.NS.) 80 bg_yI (G.NS.)

96 PLOT_MODE (G.N..) 96 _bad_lim (G.NS.) 80 chi (B.N.I)

80 PL_G (G.N..) 80 _c1 (G.NS.) 96 chk_thresh (G.NS.)

80 PL_G1 (G.N..) 80 _c2 (G.NS.) 80 det (B.N.I)

80 PL_X (G.N..) 80 _c3 (G.NS.) 1184 gmodes (GA...)

80 PL_Y (G.N..) 80 _c4 (G.NS.) 656 mA (GA...)

80 PPRNT (G.NS.) 80 _cols (G.NS.) 80 mon (B.N.I)

112 PRINTER (G..S.) 80 _const (G.NS.) 80 phi (B.N.I)

1856 Q (BA...) 80 _cp (G.NS.) 128 rplot_col (G..S.)

80 REFLEX (G.NS.) 80 _ctime (G.NS.) 80 sec (B.N.I)

80 ROWS (B.N..) 80 _d (G.NS.) 128 splot_col (G..S.)

10576 S (BA...) 80 _d1 (G.NS.) 80 th (B.N.I)

80 SCAN_N (G.NS.) 80 _d2 (G.NS.) 80 tth (B.N.I)

80 SLIT_H (G.NS.) 80 _d3 (G.NS.)

80 SLIT_N (G.N.C) 80 _f (G.NS.)

Memory usage is 41088 bytes.

16.FOURC>

The number preceding each name is the number of bytes of memory the variable con-
sumes. All the global variables in the list above come from the standard start-up
macro files. Those variables that begin with an underscore are internal to the stan-
dard macro package.

Flow Control

Flow control allows you to construct complex scans and other macros to control exper-
iments and take data. The syntax of the flow control is very similar to standard C.

For example, to list all the motor positions, you can use the following loop:

20 USER MANUAL AND TUTORIALS

16.FOURC> for (i = 0; i < MOTORS; i++) {
17.more> printf("Motor %d %-10s = %g\n", i, motor_name(i), A[i])
18.more> }
Motor 0 Two Theta = 3
Motor 1 Theta = 1.5
Motor 2 Chi = 0
Motor 3 Phi = 0

19.FOURC>

As in C, the for statement contains within parentheses three optional expressions

separated by semicolons. The first expression is executed before entering the loop.

The second is the test done before each pass of the loop — if it evaluates false, the

loop is terminated. The third expression is executed at the end of each loop.

The conditional statements

if (condition) statement

and

if (condition) statement else statement

are also available. For example, to test whether a variable has been assigned a value,
you could examine the return value of the built-in whatis() function (described on
page 82 in the Reference Manual).

19.FOURC> if (whatis("DATAFILE")>>16&0x8000)
20.more> print "Warning, Data file is uninitialized!"
21.more> ;
Warning, Data file is uninitialized!

22.FOURC>

When there is a solitary if statement, a semicolon, extra newline or some other com-
mand must be read before the if statement will be executed, as it is not clear to the
parser whether an else statement will follow. If there is an else statement, it must
follow the if portion of the statement on the next line.

22.FOURC> if (whatis("DATAFILE")>>16&0x8000)
23.more> print "Warning, Data file is uninitialized!"
24.more> else
25.more> print "Data is being stored in", DATAFILE
Data is being stored in /usr/alan/default.dat

26.FOURC>

The while construction is also available. Usage is

USER MANUAL AND TUTORIALS 21

26.FOURC> while (wait(0x22)) {
27.more> getangles
28.more> printf("%10.4f\r", A[tth])
29.more> }

30.FOURC>

As in C, continue and break statements may be used within loops. The statement

exit can be used anywhere and always causes a jump back to the command level.

Macro Facility

One of spec’s most powerful features is its provision for defining macros. Through

macros, you can simplify use of the diffractometer as well as determine the style and

format of the data output. Through the macro facility, you can customize the envi-

ronment to include any enhancements or specialized requirements for your experi-
ment. Standard macro sets included in the spec package support conventional two-
circle, four-circle and z-axis diffractometers along with some specialized liquid sur-
face diffractometers. These macros control the measurement and the recording of ex-
perimental data and establish a standard format for ASCII data files.

An example of a simple macro that can be used to record a comment on the printer is

30.FOURC> def com ’
31.quot> on(PRINTER)
32.quot> printf("$*\n")
33.quot> off(PRINTER)
34.quot> ’

35.FOURC>

Notice the prompt shows the program is expecting the quote to be closed. The vari-
able PRINTER contains a string naming the printer device used to document the

diffractometer operation. To use the above macro, type:

35.FOURC> com This is a comment.
This is a comment.

36.FOURC>

The text This is a comment is substituted in the printf() function for the symbol
$* and is printed on both the screen and the printer.

Each argument following a macro call is available to the macro using $1, $2, ... ,

where $1 refers to the first argument, and so on. Up to 25 arguments may be used.
An argument is a string of characters separated by white space (spaces and tabs) or
enclosed in single or double quotes, $* represents all the arguments, and $# is the

number of arguments.

22 USER MANUAL AND TUTORIALS

When a macro definition contains argument substitution, and you invoke that macro

with more arguments than needed, the extra arguments you typed up to the next ; , }
or newline disappear. However, if the macro does not use argument substitution in

its definition, text typed following the macro invocation is not thrown awa y.

To see what a macro contains, use the command prdef to print out the macro defini-

tion.

36.FOURC> prdef com
def com ’

on(PRINTER)
printf("$*\n")
off(PRINTER)

’
37.FOURC>

Notice that the form of the definition, if written to a file, would be suitable for read-

ing back in as a macro definition.

The standard macro library is read automatically the first time you run spec or
when you start the program with the -f flag. You can get a listing of all the currently
defined macros with the command lsdef .

37.FOURC> lsdef
ALPHA (4) bug (275) hklscan (1639) qdo (10)

AZIMUTH (4) ca (182) hkradial (334) rplot (10)

BETA (4) calcA (7) hlcircle (339) rplot_res (112)

CEN (10) calcE (7) hlradial (333) save (432)

Escan (1448) calcG (7) hscan (139) savegeo (1121)

F_ALPHA (4) calcHKL (7) initdw (42) saveslits (99)

F_AZIMUTH (5) calcL (8) initfx (39) saveusr (0)

F_BETA (4) calcM (7) initnec (44) savmac (118)

F_OMEGA (5) calcZ (7) initoki (39) scan_head (5)

F_PHI (5) cat (14) inittemp (33) scan_loop (5)

Fheader (0) cd (11) klcircle (339) scan_move (5)

Flabel (2) ci (177) klradial (333) scan_on (192)

Fout (2) cl (22) kscan (139) scan_plot (0)

Ftail (0) com (12) l (16) scan_tail (5)

H (4) comment (184) less (15) set (344)

K (4) config (109) lm (539) set_E (314)

L (4) count (6) lp_plot (674) set_dial (649)

LAMBDA (4) ct (47) ls (13) set_lm (349)

OMEGA (4) cuts (764) lscan (139) setaz (448)

Pheader (0) cz (177) lup (419) setlat (764)

Plabel (2) d (12) mail (16) setmode (927)

Pout (2) d2scan (564) measuretemp (1) setmono (368)

RtoT_0 (162) d3scan (688) mesh (1221) setplot (1119)

RtoT_1 (162) debug (212) mk (175) setpowder (867)

RtoT_2 (161) do (9) move_E (208) setscans (67)

RtoT_3 (163) dscan (95) move_em (8) setsector (1341)

TtoR_0 (160) dtscan (143) mv (175) setslit (464)

USER MANUAL AND TUTORIALS 23

TtoR_1 (160) dumbplot (334) mvd (192) setslits (469)

TtoR_2 (159) end_reflex (131) mvr (191) settemp (217)

TtoR_3 (161) freeze (456) mz (268) show_cnts (327)

_check0 (240) g_aa (4) ned (14) showslits (114)

_chk_lim (266) g_al (4) newfile (1165) showtemp (133)

_cleanup2 (0) g_bb (4) newmac (270) splot (8)

_cleanup3 (0) g_be (4) offd (13) splot_res (150)

_count (158) g_cc (4) offp (12) startgeo (45)

_do (479) g_chi0 (5) offsim (126) starttemp (225)

_getcut (8) g_chi1 (5) offt (10) startup (245)

_head (1363) g_frz (4) ond (12) te (105)

_hkl_lim (84) g_ga (4) onp (11) teramp (458)

_hklline (1254) g_h0 (5) onsim (127) th2th (141)

_hklmesh (638) g_h1 (5) ont (9) tscan (732)

_loop (413) g_haz (5) or0 (549) tw (742)

_mo_loop (175) g_k0 (5) or1 (551) u (10)

_mot (124) g_k1 (5) or_swap (320) uan (23)

_move (37) g_kaz (5) p (8) ubr (31)

_pcount (132) g_l0 (5) pa (1301) uct (364)

_plot_scale (392) g_l1 (5) pl (176) umk (31)

_pmove (131) g_laz (5) pl_CFWHM (10) umv (19)

_scanabort (102) g_mo_d (5) pl_COM (10) umvr (20)

_setcut (8) g_mo_s (5) pl_FWHM (10) unfreeze (39)

_settemp (1) g_mode (4) pl_LHMX (10) upl (24)

_tail (83) g_om0 (4) pl_MAX (10) uwm (694)

_update1 (204) g_om1 (5) pl_MAXX (10) vi (13)

_update2 (255) g_phi0 (5) pl_MIN (10) vt52_rplot (1190)

_update4 (370) g_phi1 (5) pl_MINX (10) vt52plot (914)

_var (171) g_sect (4) pl_SUM (10) w (12)

a2scan (1172) get_E (74) pl_SUMSQ (11) wa (231)

a3scan (1439) getvar (65) pl_UHMX (10) waitall (7)

add_reflex (408) gpset (123) pl_xMAX (11) waitcount (7)

an (173) gt101_rplot(1190) pl_xMIN (11) waitmove (7)

ansi_rplot (1196) gt101plot (915) plot (40) wh (48)

ansiplot (933) h (4) plot_res (435) whats (744)

ascan (865) help (24) prcmd (42) wm (1232)

beep (12) hi (7) pts (87) yesno (162)

beg_reflex (283) hkcircle (339) pwd (11)

br (175) hklmesh (1095) qcomment (176)

38.FOURC>

Each macro is listed as well as the number of characters in its definition. Some
macros have zero length — their definitions are assigned during the course of an ex-

periment. In the standard library, macros that are only used within other macros

(and not meant to be referenced directly by the user) begin with an underscore.

Another macro handling command allows you to remove a macro definition.

24 USER MANUAL AND TUTORIALS

38.FOURC> undef com

39.FOURC> prdef com
com: undefined.

40.FOURC>

There are several special macro names. If a macro named cleanup is defined, it will

be automatically invoked whenever there is an error or ˆC interrupt. This macro can

be defined to print a message, update a file, return motors to a starting position, etc.

For example, in the standard macro library, something like the following is defined

for the duration of a scan:

def cleanup ’
comment "Scan aborted after %g points." NPTS
undef cleanup

’

Similarly, a macro named cleanup1 can be defined, which behaves the same way.
However, if cleanup exists, it will be run first.

Also begin_mac , end_mac and prompt_mac have special meaning. (text forthcoming
...)

Command Files

Macros are generally defined and maintained using the command file facility. In ad-
dition, sequences of experimental scans are often called up using command files.
Command files are ASCII files of text, created with any of the UNIX text editors, and
contain input just as it would be typed interactively. Command files are read line by
line by spec when invoked with the functions dofile() or qdofile() . For example,

40.FOURC> dofile("spec.mac")
Opened command file ‘spec.mac’ at level 1.

FOURC.1> (Commands from file echoed as read ...)

The .1 extension to the prompt indicates the level of nesting. Command files can be
nested to five levels.

The function qdofile() is identical to the function dofile() except that the com-

mands are not echoed as they are read.

40.FOURC> qdofile("spec.mac")
Opened command file ‘spec.mac’ at level 1.

41.FOURC>

USER MANUAL AND TUTORIALS 25

If a file named spec.mac exists in your current directory, it is read as a command file

each time you run spec. You can have private initialization code and macros in this

file.

Two standard macros are defined to simplify reading command files. The macros do
and qdo are normally used in place of the above functions. In addition to supplying

the parentheses and quotation marks around the file name and recording the do com-

mand on the printer and in the data file, these macros also allow you to repeat the

last command file when a dot is given as the argument:

41.FOURC> qdo .

qdo spec.mac
Opened command file ‘spec.mac’ at level 1.

42.FOURC>

Just as with keyboard input, comments can be included in a command file. Every-
thing following a # up to a newline is ignored by spec.

Status and Help

Below is a summary of the diagnostic commands — most have been previously men-
tioned.

syms lists built-in, global and local symbols.
lsdef lists the names and sizes of macros.
prdef prints out macro definitions.
lscmd lists built-in keywords and functions.

All the above commands can take pattern arguments, employing the metacharacters

? and * . In a pattern argument, ? stands for any single character, while * stands
for any string of characters, including the null string. For example, lsdef ??? lists
all the three-letter macros:

42.FOURC> lsdef ???

CEN (10) com (12) ned (14) or0 (549) qdo (10) uct (364)
_do (479) lup (419) ond (12) or1 (551) set (344) umk (31)
bug (275) mvd (192) onp (11) pts (87) uan (23) umv (19)
cat (14) mvr (191) ont (9) pwd (11) ubr (31) upl (24)

43.FOURC>

Likewise, lsdef *scan shows all the macro names that end in scan .

26 USER MANUAL AND TUTORIALS

43.FOURC> lsdef *scan

Escan (1448) ascan (865) dscan (95) hscan (139) tscan (732)
a2scan (1172) d2scan (564) dtscan (143) kscan (139)
a3scan (1439) d3scan (688) hklscan(1639) lscan (139)

44.FOURC>

A single * matches everything.

An on-line help facility exists to display files from spec’s help directory:

44.FOURC> help
Help is available on the following subjects (type "h subject"):

386 config files geometry macros powder sizes
ackno counting flow gpib news print spec
angles debug fourc help pdp serial syms
changes do functions history plot simulate syntax

45.FOURC>

help (and simply h) are macros that use the built-in gethelp() function to print files
contained in the help directory. The above listing is also produced by typing gethelp
("help") . The command gethelp("news") is automatically executed each time the
program starts up. New help files particular to a site may be added to the help direc-
tory.

UNIX Commands

The easiest way to write macro definitions is to use a standard text editor to create a
command file, and the easiest way to get at the text editor is through the unix()
function that spawns subshells.

45.FOURC> unix("vi macro.defs")
"macro.defs" 3 lines, 20 characters

46.FOURC> qdo macro.defs
Opened input file ‘macro.defs’ at level 1.

47.FOURC>

Any UNIX command may be spawned as in the above example. Because this is so use-

ful, a macro has been written to simplify the syntax. You could type:

USER MANUAL AND TUTORIALS 27

47.FOURC> u vi m acro.defs
"macro.defs" 3 lines, 20 characters

48.FOURC> qdo macro.defs
Opened input file ‘macro.defs’ at level 1.

49.FOURC>

The unix() command (or the u macro) with no argument will spawn a subshell. You

return to spec upon exiting the subshell. spec uses the shell environment variable

SHELL or shell, if set, to select the type of UNIX shell. By default, /bin/sh is used.

With arguments, unix() uses /bin/sh to execute the one-line command. For some

common UNIX commands, macros such as the following are defined in the standard li-

brary.

def cat ’unix("cat $*")’
def ls ’unix("ls $*")’
def l ’unix("ls -l $*")’
def vi ’unix("vi $*")’

The working directory of spec can be changed as with the shell.

49.FOURC> cd data
Now in ‘data’

50.FOURC>

The macro cd used above is defined using the built-in function chdir() . Only the
working directory of the program spec is changed; the shell from which you started
spec is not touched.

Moving Motors

A primary purpose of spec is to manipulate an X-ray diffractometer according to a
calculated geometry. The automation of the angular settings is accomplished
through the use of motor controllers interfaced to the computer. spec can be config-

ured to control any number of motors.

As explained earlier, motor positions are referred to as dial positions and user posi-
tions. The diffractometer is operated in user positions. Dial positions are used to
provide a stable point of reference. The two differ possibly by a sign and/or an offset.

Dial positions should be set to always agree with the physical dials of the diffrac-

tometer motors. The user positions are then set in the line-up procedure of the

28 USER MANUAL AND TUTORIALS

diffractometer. For example, they may be set to zero at the direct beam. The rela-

tions between the two positions are:

dial = hardware_register / steps_per_unit

user = sign × dial + offset

The hardware_register contains the value maintained by the stepper motor con-

troller. The value of steps_per_unit is assigned in the hardware configuration file, as

is sign. The latter must be chosen to agree with the conventions of the built-in geom-

etry calculations.

The motor positions are often placed in the A[] array. The array is built-in and its el-

ements can be used like any other variables. What makes it special, however, are the

commands that use the array to convey the positions of the diffractometer motors.

For example, the command getangles sets all of the elements of the A[] array to the

current motor positions in user angles, while the move_all command sends the mo-

tors to the positions contained in A[] (in user angles). Typical usage is,

50.FOURC> waitmove # Make sure no motors are active.

51.FOURC> getangles # load A[] with user angles.

52.FOURC> A[0] = 3 # move motor #0 to 3.

53.FOURC> move_all # start the move.

54.FOURC>

(The # symbols introduce comments.) It is important to first wait for any previous
motions to complete. Then getangles is used to load the angle array with the cur-
rent positions. Only the values for the motors to be moved are reassigned before us-
ing move_all to set the motors in motion.

A macro that would list the user positions of all the configured motors might be:

54.FOURC> def wa ’
55.quot> getangles
56.quot> for (i = 0; i < MOTORS; i++)
57.quot> printf("%9.9s = %g\n", motor_name(i), A[i])
58.quot> ’

59.FOURC> wa
Two Theta = 3

Theta = 1.5
Chi = 0
Phi = 0

60.FOURC>

USER MANUAL AND TUTORIALS 29

The motor_name() function returns the motor name assigned in the configuration

file.

The motor positions are stored in three locations: in program memory, on the com-

puter’s hard disk and in the hardware registers associated with the motor controller.

The program manipulates the angles in its memory. The values on the hard disk are

updated every time a motor is moved but are only read when the program is initial-

ized, or after the reconfig command is invoked. The controller registers count the

actual number of steps moved and should be the true positions of the motors (unless

a motor was switched off). Before each motor is moved, the controller registers are

compared with program memory. If there are discrepancies, you are notified and

asked which value is correct. The sync command can also be used to synchronize the

controller registers with program memory. The angles can get out-of-sync by moving

the motors with manual controls, by turning off the power to motor controllers or per-

haps by a computer crash.

Although the motor controllers work in steps, it is much more convenient to use real
units such as degrees (or, for linear motion, millimeters). The user and dial angles
are in these units, converted from steps by the step-size parameters that are read
from the configuration file.

The chg_dial(motor , dial_angle) function sets the dial register to dial_angle for
one motor. The chg_offset(motor , user_angle) function sets the offset used to
convert from dial positions to user positions for one motor. Often during the line-up
procedure you will want to zero a particular angle:

60.FOURC> chg_offset(th, 0) # s et motor theta to zero

61.FOURC>

The set macro includes the above and documents the change on the printer and in
the data file.

61.FOURC> set th 0

Wed Aug 19 11:53:33 1987. Theta reset from 1.5 to 0

62.FOURC>

Dial and user settings may also be set by the spec administrator using the program
edconf. See page 229 in the Administrator’s Guide for further details.

Usually, diffractometer motions have a limit of travel, beyond which physical damage

may occur (or a hardware limit switch tripped). Software limits therefore exist to
prevent you from accidentally moving a motor out of range. The lower and upper

limits for each motor are contained in internal arrays accessed through the

30 USER MANUAL AND TUTORIALS

set_lim(motor_number, low, high) and get_lim(motor_number, flag) functions.

With the latter, the lower limit is returned if flag is less than zero, otherwise the up-

per limit is returned.

If a move_all command would take any motor outside of its limits, an error message

is printed and no motors are moved. The limit values are stored in dial angles since

they correspond to physical limitations to the motion. The limit values are therefore

preserved as the user-angle offsets are changed. The set_lm macro can be used to

set a single motor’s limits:

62.FOURC> set_lm tth 0 360

Two theta limits set to 0 360 (dial units).

63.FOURC>

The angle arguments to the macro set_lm are given in user angles. (In this example,

dial and user angles are the same.)

Dif fractometer Geometry

You can operate a two-circle diffractometer in terms of angles alone. However, for a
four-circle diffractometer (and others such as the z-axis or liquid-surface diffractome-
ters) it makes more sense to work in three-dimensional reciprocal space coordinates.
It is therefore necessary to be able to calculate angles according to the diffractometer
geometry.

spec is designed to accommodate a variety of diffractometer configurations. The par-
ticular calculations are contained in geometry code (the source for which is included
in the standard spec package.) accessible through the calc() function. The argu-
ments to calc() determine the particular code that is called. For example, a calcA
macro is defined as calc(1) . Its purpose is to load the A[] array with the angles cor-
responding to the current reciprocal space coordinates. The four-circle configuration

represents the three reciprocal space coordinates as the first elements of the built-in

array Q[] . For convenience, the following definitions are made:

def H ’Q[0]’
def K ’Q[1]’
def L ’Q[2]’

Thus, to move to a position in reciprocal space such as the point [100], the appropri-
ate commands would be

63.FOURC> H = 1; K = L = 0; w aitmove; getangles; calcA; move_all

64.FOURC>

USER MANUAL AND TUTORIALS 31

Whenever the move_all command is used, it is important that the A[] array contain

the current motor positions for all motors except the ones to be moved. In the above

example, the getangles command loads A[] with the current positions after the

waitmove ensures all motors have stopped. The calcA changes the appropriate ele-

ments of the A[] array and the move_all starts the motors.

Often, you might change a single angle, or several angles, and then wonder where in

reciprocal space the diffractometer is set. The calcHKL macro will take the positions

in the A[] array and set the variables H, K , and L to the calculated coordinates. For

example:

64.FOURC> waitmove; getangles; calcHKL; print H, K, L
1 0 0

65.FOURC>

The command getangles loads the A[] array with the current positions.

Counting

Another important function of the diffractometer program is to measure the scattered
X-ray intensities. spec supports several types of timers, scalers and multichannel
analyzers (MCAs). Timers control the count time. Scalers count detected photons.
MCAs accumulate many channels of counts and are used with energy-dispersive de-
tectors and positional-sensitive detectors.

To count the number of X rays incident on the detector per second, the counting hard-
ware must be able to accumulate detector counts accurately within a fixed time pe-
riod. The scaler hardware is gated by a clock that operates independently of the com-
puter. Thus, the response time of the computer to interrupts (real-time events) does
not affect the accuracy of the count. spec programs and starts the clock and senses

when the clock period, and hence the counting, has ended. spec can then read the
contents of the scalers and save the measurement in a data file.

Clearing the scalers and starting the clock is accomplished by the function

tcount(seconds) . To count for one second, type:

65.FOURC> tcount(1)

66.FOURC>

The contents of the scalers are accessed through the built-in S[] array. The hard-

ware scalers are read and their contents loaded into the scaler array by the get-
counts command. A second, associated string array, S_NA[] , is defined in the stan-

dard macros and identifies each scaler:

32 USER MANUAL AND TUTORIALS

66.FOURC> getcounts; printf("%s = %g\n%s = %g\n%s = %g\n",\
67.cont> S_NA[0], S[0]/1000, S_NA[1], S[1], S_NA[2], S[2])
seconds = 1
monitor = 347
detector = 35031

68.FOURC>

The first scaler, labeled seconds , is usually fed a 1 kHz signal, so it actually tracks

milliseconds and is therefore divided by 1000. The number of scalers available de-

pends on the particular hardware and the number of detectors and monitors used.

The default scaler channel numbering for the first three scalers puts a 1 kHz time

signal in scaler 0, monitor counts in scaler 1 and detector counts in scaler 2.

You can also count to a fixed number of monitor pulses, rather than to a fixed time

period.

68.FOURC> mcount(1e4)

69.FOURC> getcounts; printf("%s = %.1f\n%s = %g\n%s = %g\n",\
70.cont> S_NA[0], S[0]/1000, S_NA[1], S[1], S_NA[2], S[2])
seconds = 28.8
monitor = 10000
detector = 1.00954e+6

71.FOURC>

Counting is asynchronous, i.e., the tcount() and mcount() functions return immedi-
ately after starting the clock. They do not wait until the counting period is over. Use
the wait() function to determine when counting is finished.

A useful macro has been written to count and print the scaler contents:

71.FOURC> ct 5

Thu Aug 20 19:11:51 1987
Seconds = 5 Detector = 175103 (35020.6/s) Monitor = 1730 (346/s)

72.FOURC>

If the argument is omitted, a default count time (stored in the global variable COUNT)
is used. A positive argument to ct signifies seconds; a negative argument signifies
monitor counts.

72.FOURC> ct -10000

Thu Aug 20 19:13:42 1987
Seconds = 28.3 Detector = 1.0434e6 (36869.3/s) Monitor = 10000 (353.36/s)

73.FOURC>

USER MANUAL AND TUTORIALS 33

CAMAC, GPIB and Serial

Besides the built-in hardware support for moving motors and counting using CAMAC

(IEEE-583), GPIB (IEEE-488) and serial (RS-232C) interfaces, spec provides gener-

alized input /output support over these interfaces from the command level.

The ca_get(device , subaddress) command will return the contents of the ad-

dressed module register (F=0 in the standard FNA CAMAC command code), while

ca_put(data , device , subaddress) will write the 24-bit value data to the ad-

dressed module register (F=16). The device argument is the I /O module index from

the configuration file and can be 0, 1 or 2. The CAMAC slot number of the module is

set in the configuration file. The subaddress argument is the module’s subaddress

(the A in the FNA).

spec allows you to send a string of characters to a GPIB instrument at any GPIB ad-

dress and to read a string of characters from any instrument. When reading charac-

ters, spec will accept a string terminated by either a newline or by carriage return—
newline, or you can specify the number of bytes to be read. For example, to initialize
a particular voltmeter having GPIB address 12, you would issue the command:

73.FOURC> gpib_put(12, "D0R0Z0B0T0K1M0G1X")

74.FOURC>

That instrument might then be read with:

74.FOURC> {k_ohms = gpib_get(12); print k_ohms}
100.024

75.FOURC>

The command

75.FOURC> x = g pib_get(12, 4)

76.FOURC>

would read 4 bytes from device 12 and not look for terminators.

When sending strings using gpib_put() , you cannot send null bytes. Usually a de-

vice that requires null lower order bits in a data byte will ignore the high order (par-
ity) bit. In this case, you can usually set that highest bit to avoid sending a null byte.

The ser_get(device , n) and ser_put(device , string) functions access the serial

interface, where device is the index from the configuration file and can be 0, 1 or 2.

In ser_get() , n is the most number of bytes to read. The function will return after
reading one line (terminated by a newline or carriage return) from the device, even if
the number of bytes is less than n . In ser_put() , string contains the characters to

be written.

34 USER MANUAL AND TUTORIALS

Using spec with C-PLOT and Other UNIX Utilities

Standard Data File Format

The format of the data files used by spec is set at the macro level. The files are

ASCII, so they can be easily manipulated by other UNIX utilities such as grep, sed,

awk or any of the editors. The format of files produced by the standard macros is de-

scribed here.

When opened with the newfile macro, the following header is written to initialize

the data file:

#F /tmp/data
#E 729994936
#D Wed Feb 17 19:22:16 1994
#C cu 110 User = bill
#O0 Two Theta Theta Chi Phi

Information or control lines begin with a # character, with the character in the second
column indicating the type of information that follows. The first line of the data file
header contains the name by which the file was opened. The next line is the number
of seconds from the UNIX epoch as returned by the time() function. In the data that
will follow, each scan point will include a field containing the number of seconds
elapsed since that file creation time. Next in the header is a line containing the date
as returned by the date() function, then a comment line. That is followed by a line
containing all the motor names in use. Each motor name is separated from the other
by two spaces. What will then follow will be various comment lines created by the
comment macros, user defined entries and scan data.

Each scan has a header that looks like the following, always beginning with a blank
line:

#S 1 hklscan 0.9 1.1 0 0 0 0 2 0 1
#D Wed Feb 17 19:25:55 1994
#T 1 (Seconds)
#G0 0 0 0 0 0 1 0 0 0 0 0 0
#G1 1 1 1 90 90 90 3 3 3 90 90 90 1 0 0 0 1 0 60 30 0 0 0 0 60 30 0 -90 0 0 0
#Q .9 0 0
#P0 29.745 29.745 90 0
#N 7
#L H K L Epoch Seconds Monitor Detector

The first line of the scan header contains the scan number followed by the basic scan

name and its arguments. (Scans invoked as hscan or kscan execute the basic
hklscan , scans such as lup or dscan execute ascan , etc.) The next line is the date
and time the scan was started. Following that, the #T control line indicates that the

scan was counting to time and for what duration at each point. A #M would indicate

USER MANUAL AND TUTORIALS 35

counting to monitor.

The next lines give information that describe the diffractometer configuration at the

start of the scan. Following #G0 are the current values of the four-circle parameters,

which are defined four-circle macro file, macros/fourc.src. Following #G1 are the cur-

rent parameters describing the crystal lattice and orientation matrix. The identifica-

tion of these parameters is in the macro file macros/ub.mac. The #Q line gives the

H, K, L coordinates at the start of the scan, while the #P0 line gives the motor posi-

tions at the start of the scan with each column corresponding to the motor names in

the #O0 line of the scan header. The 7 after #N indicates there will be seven columns

of data in the scan, and the #L line gives the names for each column, each name sepa-

rated from the other by two spaces. The detector counts are always placed in the last

column, preceded by the monitor counts, if counting to time, or the elapsed time for

that data point, if counting to monitor. The Epoch column has the number of seconds

elapsed from the time of the #E at the start of the file.

Following the scan header is the scan data. These are just lines of space-separated
numbers that correspond to the column headers given with #L . Intervening #C com-
ment lines may lie within the rows of data if, for example, the scan was aborted and
then restarted with the scan_on macro. Otherwise, the data continues until the next
non-comment control line or blank line.

You can develop your own programs and scripts to extract data from the spec data
file, or you may want to use the scans.4 user function that is part of the C-PLOT pack-
age, or the stand-alone scans program that is based on scans.4.

Scans.4

The C-PLOT user function scans.4 reads in files of ASCII data according to a modest

set of conventions. In particular, scans.4 manipulates the X-ray scattering data from
the spec data files, doing scan averaging, background subtraction, data normaliza-
tion and error bar calculation. The C-language source code to scans.4 is always avail-

able on your system, is liberally commented and should always be consulted if there

is any question as to what operations are being done on your raw data points.

The scans.4 user function can be invoked from C-PLOT either as,

PLOT-> fn scans.4

or

PLOT-> fn scans.4 options scan-numbers

Use the second form when running from command files. The possible options are:

36 USER MANUAL AND TUTORIALS

. Use same options as last time.

-i Initialize, used to start up function and return.

-f filename Select scan file name.

-p Print scan file contents.

+e or -e Calculate (or don’t) error bars from statistics.

+s or -s Sort and merge (or don’t) data by x values.

+d or -d Collect (or don’t) 3 columns of data.

+r or -r Rerange (or don’t) plot axis for each new data set.

+S or -S Retrieve scans by scan (or file) number.

+v or -v Print (or don’t) each line of scan file (verbose).

+n or -n Normalize (or don’t) data points.

-m Turn on +n flag and normalize to monitor counts.

-t Turn on +n flag and normalize to time.

x=# Set column for x values.

y=# Set column for y values.

z=# Set column for z values and turn on +d flag.

The default options are:

-f data +esSn -rvd -m x=1 y=-1

Retrieving Scans By Scan Number or File Position Number

Scans can be retrieved by entering either the scan number (option +S , default) or the
file position number (option -S). Scan numbers are determined by the #S lines in the
file. The file position number is the sequence position of the scan in the file, irrespec-
tive of scan number. Normally, the scan number and the file position number are the
same.

When selecting by scan numbers, if there is more than one scan with the same num-
ber, the last one is retrieved. Specify which instance of a repeated scan to retrieve by
using the scan.sub syntax. For example, selecting scan 10.3 retrieves the third in-

stance of scan number 10.

USER MANUAL AND TUTORIALS 37

Negative numbers count back from the end of the file and are always considered to be

file position numbers. For example,

fn . -1

will always return the last scan in the file. You can read in multiple scans by giving

several scan numbers as arguments. You can read in a group of consecutive scans

with

fn . 3-7 10-14

The above reads in scans 3 through 7 and 10 through 14.

Mer ging Scans and Background Subtraction

The default +s option causes the data points from all the scans read in to be sorted by

x values and data points with the same x value averaged. If data is to be normalized

and/or error bars calculated, the appropriate weight is given to the count time for
each point.

Scan numbers that end with the letter b are used as background scans. The sort-
and-merge flag should be in effect when using background scans. Entering

fn . 12b 13 14b 15b 16 17b

for example, or

fn . 13-15 16-27b

will merge the data from the background scans with the data scans, subtracting the
background counts from the data counts at each x value. When doing merging and
background subtraction, the x values must be identical for the data points to be
merged.

File Conventions

scans.4 only uses some of the control lines in the standard spec data files described

earlier.

The control conventions used by scans.4 are:

38 USER MANUAL AND TUTORIALS

#S number Starts a new scan. number is the user’s numbering

scheme.

#M number Indicates data was taken counting to number monitor

counts.

#T number Indicates data was taken counting for number seconds.

#N number Indicates there are number columns of data.

The following control lines do nothing, although they will be printed to the screen

while reading a scan.

#C comment ... Conventionally a comment.

#D date Conventionally the date.

#L lab1 lab2 ... Conventionally data column labels, with each label

separated by two spaces.

Data Columns

By default, x values are taken from the first column, y values from the last column.
Monitor counts are always taken from the column prior to the y column.

When entering column numbers, a negative number counts backwards from the last
column. If the column for x is zero, the value put in for x is just the row number of
the point with respect to the start of the data for the current scan.

More Details

After scans.4 reads and indexes a data file, it remembers the file length. If you an-
swer affirmative to the Change modes? query, scans.4 will add to the index if the file
has lengthened.

If you give a dot (.) as the command line argument or in response to Scans/options
query, the previous argument or option string will be used. That is, the string is re-

membered, not the options chosen interactively using Change modes? For instance, if

you enter a long sequence of scan numbers and read in the scans, then change some-
thing via Change modes? , you can simply enter a dot in response to Scans/options
and recover the previous sequence of scan numbers.

When you do enter a string of flags and scan numbers, the modes set by the flags only

apply to the scans that follow the flags and not the preceding scans.

USER MANUAL AND TUTORIALS 39

The Index File

Indexing a long ASCII data file to find at what byte offset each scan begins takes

time. Once scans.4 has indexed a file, it saves the index information in a binary-for-

mat index file. The name of the index file is formed by appending .I to the original

data-file name. As long as the index file is more recent than the data file, scans.4 will

take the index information from the index file.

Nor malization and Error Bars

The values returned as error bars are those due to counting statistics (the square

root of the number of counts). When the counts are derived from the algebraic combi-

nation of detector, background and monitor counts, the error bars are calculated us-

ing the appropriate propagation of errors formalism.1

Contents

A contents program is included in the spec package. The program tries to print sum-
mary scan information from spec’s standard data files. Usage is

contents [options] f ile1 [file2 ...]

Current options are

-o output Name of output file, otherwise standard output is used.
-s start Starting number for first scan of first file.
-p page Lines per page.
-d Send control codes appropriate for DecWriter II.
-c Print #C comment lines.

1P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, (McGraw-Hill, New York,
1969), p. 64.

40 USER MANUAL AND TUTORIALS

Showscans

The showscans program is a shell script that serves as a front end for an awk script

called show.awk, which is installed in the spec auxiliary file directory. The awk

script prepares a C-PLOT command file that will be automatically run to make sum-

mary plots of scans from spec data files. Twelve scan plots are placed on each page.

The text is very small, so a high resolution display device is recommended.

Usage is

showscans [options] [file_options] f ile [[file_options] file ...]

where the global options relate to C-PLOT commands and are:

−eb error_bars Error bar mode (default is 0, off).

−ft font Font code (default is font 2).

−sy symbol Symbol code (default is L, a line).

−zi filter Graphics filter (default is psfilter).
−w Wait for keyboard <return> after each page
−x Shorthand for −zi "x11 −rotate" -w

The file_options apply only to the next file on the command line and are:

-f from_scan_number Starting scan number for the following file.
-t to_scan_number Ending scan number for the following file.

In no scan numbers are specified, all the scans within a file will be processed.

File names that end with .I are ignored as they are assumed to be scans.4 index files,
allowing you to use metacharacters to specify filenames a little more freely.

The awk script recognizes all the standard scan headings produced by the standard
spec scan macros and uses that information to select the x-axis label and the column
for the independent variable in the data file. The title of each of the small plots is the
starting Q vector of the displayed scan, taken from the #Q line of the data files.

If the monitor counts are zero for any point in a scan, that scan is not plotted. The
show.awk file can be edited to disable that feature.

USER MANUAL AND TUTORIALS 41

42 USER MANUAL AND TUTORIALS

REFERENCE MANUAL

44 REFERENCE MANUAL

Introduction

The material contained in this part of the documentation describes most of the built-

in features of the spec program, that is, those parts of spec that are compiled into

the code and cannot be changed at the installed site. These features include the user

interface and the general hardware support, but do not include application-depen-

dent features, such as geometry code for operating diffractometers and macro li-

braries.

Inter nal Structure Of spec
This section briefly explains spec’s internal structure to give an overview of how it is

constructed.

First, consider how a user’s input gets interpreted. The initial translation of charac-
ters typed at the keyboard (or read from a command file) is done by the input pre-

processor, which keeps track of the input sources and handles command recall (or his-
tory) substitution.

The input text is then broken into tokens by the lexical analyzer. Tokens represent
the different kinds of input objects, such as keywords, operators, variables, number

constants and string constants. When the lexical analyzer recognizes a predefined
macro name, its definition, possibly with argument substitution, is pushed back onto
the input stream to become further input to the lexical analyzer.

The parser in spec repeatedly calls the lexical analyzer to obtain tokens. The parser

contains a set of grammar rules that determine acceptable sequences of tokens. A
syntax error occurs when input violates these rules. When enough input is read to
satisfy a complete set of rules, the parser returns a parse tree (or mini-program) to
the executor. The executor code then steps through the parse tree, calling the appro-

priate internal functions for each action.

The macro-definition command def is an exception to the above rules. As soon as the
parser recognizes the def command sequence, the macro name and its definition are
saved and made available to the lexical analyzer, even while the parser is still build-

ing the mini-program. A different command, rdef , defers storing the macro defini-

tion until the mini-program is executed. The rdef command is useful when some
flow control logic needs to be run to decide what definition to assign to the macro.

Understanding the difference between the parse phase and execution phase of spec
is important. Each time the command-level prompt is given, a new parse tree will be

created. If several semicolon-separated commands are given on the same line, a

REFERENCE MANUAL 45

separate parse tree will be created for each. However, curly brackets can be used to

group any number of lines together to form just one parse tree. A significant conse-

quence of the parse tree mechanism is limitation of the scope of a nonglobal variable

to the statement block in which it is referenced.

spec may detect error conditions during each of the phases described above. Some of

these errors (and the interrupt character, usually a ˆC) reset spec to the command-

level prompt.

spec also manages auxiliary files. The state file contains the variables, macro defini-

tions, output file names and additional parameter values unique to each user, termi-

nal and diffractometer. The state file preserves the current situation when the user

leaves the program so that the same situation can be restored when the user later re-

turns to the program. The history file stores the user’s command history. spec also

creates an empty lock file to prevent a second instance of spec from running using

the same state file. A points file stores the configuration and data associated with the

deprecated data group facility. All these files are placed in the userfiles subdirectory
of each configuration’s auxiliary file area.

Syntax Description

Comments

A # introduces a comment. Everything following a # on an input line is ignored (un-
less the # is within a string). Comments are retained in macro definitions and are
counted in the macro length.

Doc Strings

Everything between pairs of triple double quotes """ is a doc string comment. The

comment block can span lines, but not files. Unlike comments that begin with a
pound sign # , doc string comments will not be saved with a macro when included as
part of the macro definition in the source file. Thus, doc string comments can be in-

terspersed in macro code without putting any extra burden on the input preprocessor

as it does macro substitution.

Identifiers

An identifier is a name — it can be a variable name, a macro name or an array name.
An identifier may begin with the letters a-z , A-Z or _ (underscore). The remaining

46 REFERENCE MANUAL

letters in a name may be those characters or the digits 0-9 . There is no limit to the

number of characters in a variable name. In the syntax rules described later, such

names are represented by the term identifier.

Arrays

Arrays are formed using square brackets, as in identifier [expression] or identifier [
expression][expression] . Both one- and two-dimensional arrays are supported.

spec has two kinds of arrays with very different properties: associative arrays and

data arrays.

Associative Arrays

With associative arrays, the array index expression can be any numeric or string-val-
ued constant or expression. Associative array element values can be numbers or
strings. For two-dimensional associative arrays, the two array indices for each ele-
ment are stored as a single string formed using the string value of the first index, fol-
lowed by the character \034 , followed by the string value of the second index. One
can access such a 2D array element using a single index constructed according to the
above recipe. That is, arr["list"]["one"] refers to the same item as
arr["list\034one"] .

Associative arrays can be initialized by assignment, as in

1.FOURC> x = [" one":"now", "two":"is", "three":"the", "three":0:"time"]

2.FOURC> print x
x["one"] = "now"
x["three"] = "the"
x["three"]["0"] = "time"
x["two"] = "is"

3.FOURC>

Here x is either an uninitialized variable or an existing associative array. If x al-
ready existed as something other than an associative array, the above assignment

statement would produce an error. Note that one- and two-dimensional initializers

can be mixed. Note also that the print command sorts the elements by index. The
index specifiers are optional for 1D arrays in the initialization. If not used, the posi-
tion in the list is used as the index, starting at zero.

REFERENCE MANUAL 47

3.FOURC> x = [" now", "is", "the"]

4.FOURC> print x
x["0"] = "now"
x["1"] = "is"
x["2"] = "the"

5.FOURC>

The values of associative array elements are saved in the state file, so are retained

across spec sessions, unless starting fresh.

All built-in global arrays, such as those that hold motor positions and scaler counts,

are associative arrays.

A number of built-in functions take associative arrays as arguments or return asso-

ciative arrays as results. For example, split() , rsplit() and match() place results

in an associative array passed as an argument. The move_info() function returns a

one- or two-dimensional associative array depending on how it is called. The
fmt_read() and fmt_write() functions pass file header elements using associative
arrays.

The internal code always uses the string value for the index of an associative array.
Thus, arr["12"] refers to the same element as arr[12] , but arr[012] is not the
same element as either arr[12] or arr["012"] . The value 012 is an octal number,
which is equal to a decimal 10, so arr[012] is the same element as arr[10] or
arr["10"] .

Data Arrays

The second kind of array is the data array. While associative arrays are indexed by
arbitrary strings or numbers and can store either strings or numbers, data arrays are
indexed by consecutive integers (starting from zero, as is the C convention) and hold

a specific data type, such as short integer, float, double, etc.

Data arrays must be specifically declared and dimensioned using the array keyword
(unlike associative arrays, which can come into existence when used in an expres-
sion). The arrays can have one or two dimensions. The mca_get() and image_get()
functions can directly fill arrays with data from one- or two-dimensional detectors.

Data arrays can be used in expressions containing the standard arithmetic operators
to perform simultaneous operations on each element of the array. In addition, a sub-
array syntax provides a method for performing assignments, operations and func-

tions on only portions of the array.

48 REFERENCE MANUAL

The functions array_read() , array_dump() , array_copy() , array_op() ,

array_plot() , array_fit() and array_pipe() handle special array operations.

The functions fmt_read() and fmt_write() transfer array data to and from binary-

format data files. The functions mca_get() , mca_put() , image_get() and

image_put() accept array arguments.

The print command will print data arrays in a concise format on the screen, giving a

count of repeated columns and rows, rather than printing each array element.

Array data can be placed in shared memory, making the data accessible to other pro-

cesses, such as image-display or data-crunching programs. The shared arrays can

both be read and written by the other processes. The implementation includes a

number of special aids for making the processes work smoothly with spec.

The data values of data-array elements are not saved in the user’s state file, unlike

associative array elements.

Data Array Usage

Data arrays must be declared with the array key word. One- and two-dimensional
arrays are declared as:

[shared] [type] array var [cols]
[shared] [type] array var [rows][cols]

On platforms that support System V Interprocess Communication (IPC) calls, the
shared keyword causes spec to place the array in shared memory (see below). The
type keyword specifies the storage type of the array and may be one of byte , ubyte ,
short , ushort , long , ulong , long64 , ulong64 , float , double or string . An initial
u denotes the "unsigned" version of the data type. The short and ushort types are
16-bit (two-byte) integers. The long and ulong types are 32-bit (four-byte) integers.
The long64 and ulong64 types are 64-bit (eight-byte) integers. The float type uses

four bytes per element. The double type uses eight bytes per element. The default
data type is double .

The array name var is an ordinary spec variable name. Arrays are global by default,

although they may also be declared local within statement blocks.

Unlike traditional spec associative arrays, which can store and be indexed by arbi-
trary strings or numbers, a data array is indexed by consecutive integers (starting
from zero), and can hold only numbers, or in the case of string arrays, only strings.

Operations on these arrays can be performed on all elements of the array at once, or

on one or more blocks of elements. Consider the following example:

REFERENCE MANUAL 49

array a[20]
a = 2
a[3] = 3
a[10:19] = 4
a[2,4,6,10:15] = 5

The first expression assigns the value 2 to all twenty elements of the array. The sec-

ond expressions assigns 3 to one element. The third assign the value 4 to the tenth

through last element. The final expression assigns the value 5 to the elements listed.

A negative number as an array index counts elements from the end of the array, with

a[-1] referring to the last element of a .

As per the usual conventions, the first index is row and the second is column. Note,

however, spec considers arrays declared with one dimension to be a single row. For

example,

array a[20]

is a one-row, twenty-column array. Use

array a[20][1]

to declare a 20-row, one-column array.

Also note well, all operations between two arrays are defined as element-by-element
operations, not matrix operations, which are currently unimplemented in spec. In
the following example:

array a[5][5], b[5][5], c[5][5]
c = a * b

c[i][j] is the product for each i and j .

When two array operands have different dimensions the operations are performed on
the elements that have dimensions in common. In the case:

array a[5][5], b[5], c[5][5]
c = a * b

only the first row of c will have values assigned, since b only has one row. The re-
maining elements of c are unchanged by the assignment.

Portions of the array can be accessed using the subarray syntax, which uses colons

and commas, as in the following examples:

array a[10][10]
a[1] # second row of a
a[2:4][] # rows 2 to 4
a[][2:] # all rows, cols 2 to last
a[1,3,5,7,9][3:7] # odd rows and cols 3 to 7

50 REFERENCE MANUAL

The elements of an array can be accessed in reverse order, as in:

a = x [-1:0]

which will assign to a the reversed elements of x . Note, though, that presently, an

assignment such as x = x [−1:0] will not work properly, as spec will not make a

temporary copy of the elements. However, x = x [−1:0]+0 will work.

The functions fabs() , int() , cos() , acos() , sin() , asin() , tan() , atan() ,

exp() , exp10() , log() , log10() , pow() and sqrt() can all take arrays as an argu-

ment. The functions perform the operation on each element of the array argument

and return the results in an array of the same dimension as the argument array.

The operations < , <= , != , == , > and >= can be used with array arguments. The Bool-

ean result (0 or 1) will be assigned to each element of an array returned as the result

of the operation, based on the element-by-element comparison of the operands.

The bit-wise operators ˜ , | , & , >> and << can also be used with array operands.

Note, spec generally uses double-precision floating point for storing intermediate
values and for mathematical operations. Double-precision floating point has only 52
bits for the significand (the remaining 12 bits are for sign and exponent). Thus, for
most operations the 64-bit types will only maintain 52 bits of significance. (The
64-bit integer types were added in spec release 6.01.)

String Data Arrays

Arrays of type string are identical to byte arrays in terms of storage requirements
and behavior in most operations. However, when used as described below, the string
arrays do behave differently.

If a row of a string array represents a number and is used in a conditional expres-
sion, then the value of the conditional expression will be the number. For example,

the strings 0.00 or 0x000 will evaluate as zero or false in a conditional expression.

In contrast, for number arrays, a conditional evaluates as zero only if every element
of the array is zero.

Functions that take string arguments, such as on() , length() , unix() , etc., will al-

low a row of a string array to be used as an argument. Use of a number array is in-

valid and produces an error.

The print command will print string arrays as ASCII text, while byte arrays display
each byte as a number.

In assignments to a row of a string array, the right hand side is copied to the byte ele-

ments of the string array as a string, even if the right hand side is a number. Any re-
maining elements of the string array row are set to zero. Thus, the results differ in

REFERENCE MANUAL 51

the assignments below:

string array arr_string[20]
arr_string = 3.14159
print arr_string
3.14159

byte array arr_byte[20]
arr_byte = 3.14159
print arr_byte
{3 <20 repeats>}

In the first example, the string representation of the number is copied to the row of

the string array, while in the second, each element of the array is assigned the (trun-

cated) value of the number.

Row-wise and Column-wise Sense

For the functions array_dump() , array_fit() , array_pipe() , array_plot() and
array_read() it matters whether each row or each column of a two-dimensional
array corresponds to a data point. By default, spec takes the larger dimension to
correspond to point number, and if both dimensions are the same, to use the rows as
data points. The row_wise and col_wise arguments to array_op() , described below,
can be used to force the sense of an array one way or the other, regardless of the
array dimensions. If an array has row-wise sense, the contents of each row corre-
spond to a data point, and one might then plot the contents of column two of each row
versus column one, for example.

Shared Memory Arrays

When created with the shared keyword, the array data and a header structure are
stored in shared memory. For each shared memory array, spec creates an immutable
global variable named SHMID_var whose value is the shared memory ID associated

with the shared memory segment and where where var is the name of the array.

This ID is used by other programs that wish to access the shared memory.

spec can connect to an existing shared memory array created by another process
running on the same platform, perhaps created by another instance of spec. The

syntax is:

extern shared array [spec :[pid :]] arr

where the optional parameter spec is the name of the spec version that created the
array, the optional parameter pid is the process ID of the version and arr is the

name of the array. The first two arguments can be used in case more than one

52 REFERENCE MANUAL

instance of the shared array exists. Examples include:

extern shared array data
extern shared array fourc:data
extern shared array fourc:1234:data

The shared array segments include a header that describes the array. Two features

of the header that are primarily associated with shared arrays that can accessed

from spec user level are tags and frames. Shared arrays tags can be manipulated

with the array_op() tag and untag options, as described in the next section.

Frame-size and latest-frame header elements allow a shared 2D array to be described

as a series of 1D or 2D acquisitions (or frames). The frame size is the number of rows

in a single frame. The latest frame is the most recently updated frame number. The

latest frame value should allow an auxiliary program that maintains a live display to

update the display efficiently. The frame values are also accessed via array_op() .

Currently, the frame values are unused by spec in array operations, although specific

hardware support may modify frames values.

The structure used for the shared memory data is given in the file SPECD/in-

clude/spec_shm.h. A C file containing an API for accessing the spec shared memory
arrays is included in the spec distribution and is named sps.c.

Keywords

The following names are reserved, being either grammar keywords or the names of
built-in commands or functions. New reserved names may be added. The list can be
obtained using the built-in command lscmd . Parentheses after a name indicate a
function.

acos() data_put() gpib_par() open() sock_put()
array data_read() gpib_poll() plot_cntl() spec_menu()
array_copy() data_uop() gpib_put() plot_move() spec_par()
array_dump() date() gsub() plot_range() split()
array_fit() dcb() h5_attr() port_get() splot_cntl()
array_op() decode() h5_data() port_getw() sprintf()
array_pipe() def h5_file() port_put() sqrt()
array_plot() deg() h5_link() port_putw() srand()
array_read() delete history pow() sscanf()
asc() dial() if prdef stop()
asin() dofile() image_get() print strdef()
atan() double image_par() printf() string
atan2() else image_put() prop_get() sub()
bcd() em_io() in prop_put() substr()
break encode() index() prop_send() syms
byte eprint input() prop_watch() sync
ca_cntl() eprintf() int() qdofile() tan()
ca_fna() eval() length() quit tcount()

REFERENCE MANUAL 53

ca_get() eval2() local rad() time()
ca_put() exit log() rand() tty_cntl()
calc() exp() log10() rdef tty_fmt()
cdef() exp10() long read_motors() tty_move()
chdir() extern long64 reconfig ubyte
chg_dial() fabs() lscmd remote_async() ulong
chg_offset() fbus_get() lsdef remote_cmd() ulong64
clone() fbus_put() match() remote_eval() undef
close() file_info() mca_get() remote_par() unglobal
cnt_mne() float mca_par() remote_poll() unix()
cnt_name() fmt_close() mca_put() remote_stat() user()
cnt_num() fmt_read() mca_sel() return ushort
constant fmt_write() mca_sget() rsplit() vme_get()
continue for mca_spar() savstate vme_get32()
cos() fprintf() mca_sput() ser_get() vme_move()
counter_par() gensub() mcount() ser_par() vme_put()
data_anal() get_lim() memstat ser_put() vme_put32()
data_bop() getcounts motor_mne() set_lim() vxi11_get()
data_dump() getenv() motor_name() set_sim() vxi11_par()
data_fit() gethelp() motor_num() shared vxi11_put()
data_get() getline() motor_par() short wait()
data_grp() getsval() move_all sin() whatis()
data_info() getval() move_cnt sleep() while
data_nput() global move_info() sock_get() yesno()
data_pipe() gpib_cntl() off() sock_io()
data_plot() gpib_get() on() sock_par()

Numeric Constants

Numeric constants can be integers or floating point numbers. Integer constants are
considered octal if the first digit is 0 . Valid digits in the rest of the constant are 0
through 7 . A hexadecimal constant begins with 0x or 0X and is followed by digits or
the letters a or A through f or F , which have values 10 through 15. Otherwise, a se-
quence of digits is a decimal constant.

Floating-point constants have an integer part, a decimal point, a fraction part, an e
or E and an optionally signed exponent. The integer part or the fraction part, but not
both, may be missing. The decimal point or the e and exponent, but not both, may be
missing.

As spec stores number values internally in double-precision format, the range of in-

teger and floating constants is determined by the range of double-precision numbers.
With the usual 64 bits allocated for a double number, the significand uses 52 bits and
the sign and exponent use 12 bits. Although signed integers can have values from

± 2 63 or unsigned values from 0 to 2 64, the values will only have 52 significant bits.

54 REFERENCE MANUAL

The following are valid numeric constants.

65535 0177777 0xFFFF
+1066 1.066e3 1.066e+3

String Constants

Strings are delimited by pairs of single or double quotes. The following escape se-

quences, introduced by a backslash, can be included within strings to represent cer-

tain special characters:

\a attention, audible alert (bell)

\b back space

\f form feed

\n newline

\r carriage return
\t horizontal tab
\\ backslash
\’ single quote
\" double quote
\ ooo octal code

\[xx] tty control code

Tty control codes are only recognized when embedded in strings passed to spec’s
built-in functions tty_move() and tty_fmt() . The recognized strings for xx are de-
scribed in the description of the tty_cntl() function on page 94.

For any other character x , \ x is just that character. The sequence \ ooo represents
one to three octal digits that have the ASCII value of a single character. For exam-
ple, \033 represents the escape character.

A character string can be continued over more than one line by using a \ at the end

of a line. On the other hand, new lines not preceded with a \ are inserted literally
into the string.

String Patterns and Wild Cards

For the commands lscmd , lsdef , prdef and syms , if the characters ? or * appear in

the arguments, the argument is taken as a pattern. Only information about those

commands, macros or symbols that match the pattern is displayed. In forming the
pattern, the character ? matches any single character, while * matches any string of

REFERENCE MANUAL 55

characters, including the null string.

Tilde Expansion

The tilde expansion feature for path names replaces the tilde character at the start of

a path name, as in ˜ / , with the current user’s home directory path, and replaces

˜ user / with any user ’s home directory path. These spec commands and functions
do tilde expansion on path-name arguments: chdir() , unix() , file_info() ,

open() , close() , on() , off() , dofile() , qdofile() , getline() , fprintf() ,

array_dump() , array_read() , data_dump() , data_read() , fmt_read() ,

fmt_write() , fmt_close() and h5_file() . In addition, the spec server will do

tilde expansion on the filename received when a client registers for output/ file-
name property events.

Command Recall (History)

The basic spec history feature lets you recall previous commands1. Examples of the
recognized syntax are:

!! Redo the previous command.
!14 Redo command number 14.
!-2 Redo the second to previous command.
!asc Redo the last command that began with asc .
!asc −10000 As above and append -10000 to the command.

history List the last 1000 commands.
history N List the last N commands.
history −N List the last N commands in reverse order.

The command number is prepended to the spec prompt as an aid in using the history
feature. Only commands typed at the keyboard are remembered for history. By de-
fault, the previous 1000 commands are retained. The number of remembered com-

mands can be changed using the spec_par() "history_size" option. See

spec_par() on page 85. The history feature cannot be used in command files.

With the basic history feature, command recall must occur at the beginning of a line,
although initial white space is allowed. Text may follow the command-recall word to

1spec is usually installed with the optional BSD libedit history library. With the libedit library, the history

syntax is greatly expanded. In addition, features such as command-line editing, and command completion become
available. See the on-line libedit help file for detailed information.

56 REFERENCE MANUAL

http://certif.com/spec_help/libedit.html

extend that command.

Appending :s/left/right/ to a recalled command will modify the first occurrence of

the string left in the recalled command to the characters right . The delimiter of

the left and right strings may be any character. The final delimiter is optional. If

left is empty, the last entered left string is used as the pattern to match.

In addition, ˆleftˆrightˆ at the start of a line is shorthand for !-1:s/left/right/ .

In this case, the circumflex (ˆ) must be used as the delimiter. The final delimiter is

optional.

The history is saved along side the state file when exiting spec. Restarting spec
reads in the saved history.

Starting Up

When you run spec, you invoke it using a name such as fourc, twoc, surf, spec, etc.
That name determines the kind of geometry code that will be available and which
macro and configuration files in the auxiliary file directory will be used, as explained
below.

The following command line options are recognized by spec:

−C file − Open the command file file as a start-up command file to be read after the
standard start-up command files, but before the optional file spec.mac in the
current directory, which will always be read last. If there is an error in read-
ing or executing the commands in these files, spec will jump to the main
prompt and not read any remaining queued command files. Up to 32 files may
be specified with multiple −C options.

−d debug − Sets the initial value of the debugging variable DEBUGto debug, which
maybe either in decimal or hexadecimal (with a leading 0x) format. The avail-

able debugging categories are described on page 63.

−D direc − Use direc as the auxiliary file directory, instead of the compiled-in name

(usually /usr/local/lib/spec.d) or the value of the SPECD environment vari-
able.

−f − Fresh start. All symbols are set to their default values and the standard macros

are read to establish the default state. Command-line history is reset unless

the −h flag is also present.

−F − Clean and fresh start. All symbols are set to their default values but no com-
mand files are read and no macros are defined. Only the built-in commands

are available.

REFERENCE MANUAL 57

−g geometry− Force loading of macro files and activation of geometry calculations for

the specified geometry, while using the configuration files taken from the name

by which spec is invoked.

−h − Retain history. When starting fresh, reset symbols and macros but keep com-

mand-line history. (Added in spec release 6.05.01.)

−l outputfile − Specify an output file. Output to the file will begin immediately, so will

include the initial hardware configuration messages. Files will be opened even

when starting fresh. Files opened this way will not be saved as output files in

the state file, so will not be automatically reopened the next time spec starts

(as of spec release 6.04.05).

−L − Do not check or create the state-file lock. Normally, spec prevents more than

one instance of itself from running with the same state file (derived from the

user name plus tty name). With some system configurations, if the state file

resides on an NFS-mounted disk, the file locking doesn’t work well and spec
will not start. This flag overrides the lock test.

−N my_name− Use my_nameinstead of the name by which spec was invoked to es-
tablish the command prompt and the name of the directory in SPECDin which
the configuration-dependent files exisit. This command also sets the geometry
to my_name. Follow this option with the −g option to choose a different name
for the geometry.

−o option=value− Initializes the spec_par() option to value. The available
spec_par() options are described on page 83.

−p fd pid − Indicates that spec input is coming from a pipe from another program.
The argument fd is the file descriptor that spec should use for standard input.
The argument pid is the process ID of the spawning process. If fd is zero, spec
will not re-echo input from the file descriptor to spec’s standard output.

−q − Indicates that spec should operate in quiet mode and allow output to all devices
to be turned off. This option is only valid when used with the −p option.

−s − Simulation mode. No hardware commands are issued. Simulation mode cannot

be turned off after entering the program.

−S − Start spec in server mode listening at the first available port in the default
range of 6510 to 6530.

−S p1 − Start spec in server mode listening at the specified port number p1.

−S p1-p2− Start spec in server mode listening on the first available port in the given
range.

58 REFERENCE MANUAL

−t tty − Use the current user (or user’s) last saved state from the terminal specified by

tty as the initial state. The terminal can be specified as −t /dev/tty01or −t tty01.
Pseudo-tty names, such as /dev/ttyp0, /dev/ttyp1, etc., are saved as

/dev/ttyp#, since there is no special significance to the number.

−T fake_tty− This option creates a user state associated with fake_tty, which may be

any name. This option allows you to bypass the locking feature that prevents

multiple instances of spec to be started by the same user from the same termi-

nal.

−u user− Use user’s last saved state as the current user’s initial state.

−v − Print version information and exit.

−y − Yes, change motor controller registers initially if they disagree with the settings

file. Normally, spec requires you to confirm such a change. This flag would be

useful if you know controller power had been turned off, and the controller’s

current positions should be updated with the software positions.

In some installations, spec is installed as a set-user-id root process, to allow certain
calls that allow privileged access to hardware device registers. The first thing spec
does on start up is to set the effective user and group ids to that of the real user, so
there is no danger of the user spawning subshells or creating files as root. The root
effective id is only used for the duration of the calls that enable the privileged access.

spec then performs other initialization tasks, including obtaining values for its inter-
nal variables DISPLAY , GTERM, TERMand HOMEfrom variables of the same name in the
process environment. It also obtains the value of the SHELL environment variable for
use with the unix() function.

spec then reads the hardware configuration from the appropriate config file from the
auxiliary file directory. The path name of that file is SPECD/spec/config, where
SPECDis the auxiliary file directory, established when spec is installed (or by the −D

invocation flag, or by the SPECD environment variable), and spec is the name by
which spec is invoked.

The first time a user starts spec, up to seven macro files are automatically read. The

path names of these files are

REFERENCE MANUAL 59

SPECD/standard.mac

SPECD/geom.mac

SPECD/spec/geom.mac

SPECD/site_f.mac

SPECD/site.mac

SPECD/spec/conf.mac

./spec.mac

where SPECD is the auxiliary file directory, as described above, geom matches the

first four letters of the name by which spec was invoked and spec is the complete

name by which spec was invoked. The files are only read if they exist. The files

SPECD/standard.mac, SPECD/geom.mac, SPECD/spec/geom.mac and

SPECD/site_f.mac are only read if the user is starting spec for the first time or has

invoked spec with the −f (fresh start) flag.

Each time spec starts up, if a macro named begin_mac is defined, that macro will be

run after reading any startup command files, but before input is read from the key-
board.

After reading the start-up macro or command files and possibly running begin_mac ,
spec prompts the user for commands.

Keyboard Interrupts

spec responds to two different asynchronous signals that can be sent from the key-
board to programs. These signals are interrupt and quit. A ˆC is usually used to gen-
erate the interrupt signal, while a ˆ\ usually generates the quit signal. The control
key assignments are, in principle, arbitrary and can be changed using the stty com-
mand from the UNIX shell. To display the current key assignments, type stty −a .

With spec, the interrupt key halts all activity, including asynchronous motor motion
or counting, and closes all command files. All output files and devices (except log

files) are closed. On keyboard interrupts (and command and syntax errors), cleanup

macros, as described below may be run.

Typing the quit character will asynchronously terminate spec without saving the
user’s state. However, if motors are moving, the program will wait for them to halt
and then update the settings file. If spec appears hung while waiting for hardware

to finish some activity, type the interrupt or quit characters once or twice more, which

should cause spec to give up on waiting and quit.

60 REFERENCE MANUAL

Cleanup Macros

On keyboard interrupts (and command and syntax errors), if macros named

cleanup_once or cleanup_always have been defined, their definitions are read as in-

put. Typical uses of the cleanup_once macro are to return motors to starting posi-

tions on an interrupted delta scan or to display counter contents if counting is inter-

rupted.

After running the cleanup_once and/or cleanup_always macros, spec gives the

standard prompt and waits for the next command from the keyboard. The

cleanup_once macro is removed before the next main prompt is issued, whether or

not it was triggered.

Definitions for these macros should be constructed using the cdef() (chained macro)

function (described on page 102) in order to allow various clean-up actions to be

added and removed during the flow of arbitrary statement blocks.

The legacy cleanup macros cleanup and cleanup1 remain supported. Like
cleanup_always , the macros remain defined across the standard prompt. However,
unlike cleanup_always , both cleanup and cleanup1 are deleted if they generate an
error or the commands contained therein are interruped by ˆC .

Exiting

A spec session is normally terminated by typing ˆD at the start of an input line. The
quit command will also terminate spec, but only when typed directly from the key-
board or when read from a command file. The quit command can’t be included in a
macro.

If there is a macro named end_mac defined, it will be run after the ˆD or quit com-
mand.

When exiting, spec saves the user’s state, and if any motors are moving, waits for

them to halt and then updates the settings file.

If spec appears hung, typing the quit character (often ˆ\) should terminate the pro-
gram. If spec is waiting for unresponsive hardware to indicate it is finished with a
move or a count, typing the quit or interrupt character again may be necessary.

REFERENCE MANUAL 61

Variables

A variable is brought into existence simply by using it. Variables assigned values at

the top level (outside of any curly-bracketed statement block) are automatically made

global. Otherwise, unless explicitly given global attributes, the scope of a variable

lies only within the statement or statement block in which it occurs.

The possible attributes of a variable are as follows:

Local A symbol with scope only in the statement block in which

it appears.

Global A symbol with scope that carries across separate state-

ment blocks. All built-in symbols are global.

Built-in A symbol that is compiled into spec and that cannot be

removed.

Constant A global symbol that cannot have its value altered by or-

dinary assignment. Such a symbol can only be changed
using the constant command.

Immutable Certain built-in symbols and motor and counter mnemon-
ics from the hardware config file, which cannot have their
values altered.

Variables can have string, number or array type and may have both string and num-
ber types simultaneously. The print command always prints the string representa-
tion of a variable. The formatted printing commands printf , fprintf and sprintf
print the string or number value, depending on the format specification. If the string
value cannot be interpreted as a number, its number value is zero. All number val-
ues are maintained as double-precision floating-point quantities.

Uninitialized variables have a number value of zero and a string value of "" (the null
string). Although associative array indices are internally derived from the string

value of the index expression, if the index is an uninitialized variable, its value for
purposes of indexing the array is the string "0" .

Functions such as input() , getline() , gpib_get() and ser_get() return string

values that possibly represent numbers. When the string is used in a number con-

text, automatic string to number conversion takes place. The conversion rules re-
quire that there are no extraneous characters in the string. An initial 0x or 0X intro-
duces a hexadecimal integer. An initial 0 introduces an octal constant, unless there

is a decimal point or an e or E exponential string, in which case the entire string is in-

terpreted as a decimal number, leading zero notwithstanding.

62 REFERENCE MANUAL

Built-In Variables

The following is a list of most of spec’s built-in variables. Some site-dependent code,

along with most of the standard diffractometer geometry code, will create additional

built-in variables. Also, motor and counter mnemonics entered in the hardware con-

figuration file become built-in variables when the config file is read by spec.

A[] — is an array dimensioned to the number of motors as obtained from the config

file. The function read_motors(0) fills the array with user angles. The user

can assign values to any of the elements. The commands move_all and

move_cnt use the values in the array. Also, the various site-dependent, geome-

try-specific calculations, accessed through the calc() user-hook function, base

their results on the values in this array or place new values in it.

CCDS — is the number of 2D image-type devices being used as determined from read-

ing the config file.

COLS — is a number-valued variable set to the number of text columns on the user
terminal or workstation window. The value is used for formatting text-mode
plots and on-line help files. COLSis generally automatically assigned a value
from the system terminal data base when spec starts up, or, if available, by
using the TIOCGWINSZcommand in the ioctl() system call whenever a value for
COLSis needed.

COUNTERS— is the number of counters being used as determined from reading the
config file.

CWD— is a string-valued variable that contains the name of the user’s current work-
ing directory. It is assigned a value when spec starts up, and is updated each
time the chdir() function is executed.

DEBUG — is a user-assignable numeric variable that determines the level of debug-
ging messages printed. The level is determined by the sum of the values given

in this table:

REFERENCE MANUAL 63

Hex Decimal What is shown

0x1 1 Show input tokens during parsing.

0x2 2 Show node execution while running.

0x4 4 Show node allocate and free.

0x8 8 Show symbol table creation and lookup.

0x10 16 Show value get and set.

0x20 32 Show misc info.

0x40 64 Show hardware related info.

0x80 128 Show more hardware related info.

0x100 256 Show macro substitution.

0x200 512 Show memory allocate and free.

0x400 1024 Show input after macro expansion.

0x800 2048 Print warning messages.

0x1000 4096 Show certain low level hardware info.

0x2000 8192 Show data array allocation.

0x4000 Show signal blocking.
0x8000 Show sleeps and other low level hardware info.

0x10000 Show input file queuing.
0x20000 Show readable runtime debugging.
0x40000 Print input context on execution-time errors.
0x40000 Print input context on execution-time errors.
0x80000 Show sleeps.

0x100000 Show thread stuff.
0x200000 Show state changes.
0x400000 Use hexadecimal for socket debugging output.
0x800000 Show server/client socket messages.

If a debugging log file is open (any file that begins with the characters dlog or
ends with the characters .dlog), debugging messages are only written to that
file, not to the screen or any other file or device.

DISPLAY — is a user-assignable, string-valued variable. Its value at the time an X-

Windows graphics filter process is spawned with the plot_cntl("open") func-
tion (with GTERMset to "x11") determines on which host and screen the plot
window will be displayed. The initial value for DISPLAY is taken from the envi-

ronment variable of the same name.

EVAL_ERR — is a built-in variable that will be assigned error messages generated by
errors from parsing or executing strings passed to the eval() or eval2() func-
tions. See the eval() function on page 80, for details.

EVAL_RESULT — is a built-in variable with a value set by the eval() or eval2() func-
tions. If EVAL_RESULT is −1, there was an error parsing or executing the

64 REFERENCE MANUAL

command string, or an attempt was made to return the value of a single unini-

tialized variable. If EVAL_RESULTis 1, the command string was a statement or

was a statement list that ended in a statement. If EVAL_RESULTis zero, the

command string or last statement in the string was an expression. See the

eval() function on page 80, for details.

FRESH — is a built-in variable that has an initial nonzero value if spec was invoked

with the −f (fresh start) flag or if a fresh start was forced by an incompatible

state file version. The value is zero otherwise, and is set to zero in any case af-

ter all start-up command files and macros have been read and their commands

executed. In the standard start-up macros, the value of FRESHis checked to

see if initial default parameter assignments should be made.

GETLINE_EOF — is a built-in variable set by the getline() function to distinguish be-

tween an end of file, an error or a literal −1 read from the file. The value of

GETLINE_EOFwill be 1 if there was an end-of-file condition on the read of the

file, −1 if there was an error reading the file or if the file couldn’t be opened
and zero if the read was successful. See the getline() function on page 90.

GTERM— is a user-assignable, string-valued variable containing a value describing
the display type to use for high-resolution graphics. Its value will be taken
from an environment variable of the same name when spec starts up, if such a
variable exists. The only currently supported GTERMvalue is x11 for X Window
System graphics. If GTERMis not set in the environment or has not been as-
signed a value, it defaults to x11 . Legacy values of vga , ega , herc , sun , etc.
are no longer supported.

HDW_ERR— is a user-assignable number-valued variable that can be set before hard-
ware calls to affect how spec responds to certain errors. After hardware calls,
the value of HDW_ERRconveys information on any errors encountered. By de-
fault, certain hardware errors cause spec to reset to command level. By set-
ting HDW_ERRto −1 before a call to user-level hardware access functions, there

is no reset, the function returns and HDW_ERRcontains an error code.

Functions which set HDW_ERRinclude counter_par(), motor_par() , mca_par() ,
ca_get() , ca_put() , ca_fna() , gpib_get() , gpib_put() , gpib_poll() ,

gpib_cntl() , gpib_par() , port_get() , port_getw() , port_put() ,

port_putw() , ser_get() , ser_put() , ser_par() , sock_get() , sock_put() ,
sock_par() , fbus_get() , fbus_put() , vxi11_get() and vxi11_put() .

When there is an error in these functions, they usually return −1, or some-

times zero. However, such values can also be valid return values. If one is do-

ing error checking, one should check HDW_ERRafter the function call. The fol-
lowing table lists the possible values for HDW_ERRand what each value indi-
cates:

REFERENCE MANUAL 65

1 Generic error

2 GPIB no listener

3 Timeout

4 A non-fatal error

5 Function called with bad argument

6 Trying to access unconfigured hardware

7 Function called with bad address

8 Lost connection

9 User abort (ˆC)

10 Unresponsive hardware

11 Disabled hardware

12 Bad parameter

13 Read only parameter

14 Write only parameter

If the value of HDW_ERRis −1 before the call to the user-level hardware access
function, no reset to command level will take place for any errors. Otherwise,
traditionally fatal errors will still be fatal.

HOME— is string valued and is initialized to the user’s home directory as taken from
the environment variable HOME. If not found in the environment, its value is
set to the current directory.

HOSTNAME— is a built-in variable containing the platform host name as returned by
the gethostname() system call.

IS_SERVER — is a built-in variable that contains the TCP port number on which spec
is listening if running in server mode. Otherwise, the value is zero.

MCAS — is the number of 1D MCA-type devices being used as determined from read-
ing the config file.

MOTORS— is the number of motors being used as determined from reading the config

file.

OUTFILES[][] — is a two-dimensional associative array that holds information about
all open output files. The first index is the name by which the file was opened

using open() , on() , fprintf() or the -l outputfile start-up option. Cur-

rently, only two options are available for the second index: "name" and "path".
The "name" element repeats the name used for the first index. The "path" ele-
ment is the full path name of the file. Additional elements may be added in

the future. For example:

66 REFERENCE MANUAL

5.FOURC> for (i in OUTFILES[]["name"])
6.more> printf("%10s %s\n",OUTFILES[i]["name"],OUTFILES[i]["path"])

dlog /tmp/dlog
data1 /tmp/data1

tty /dev/tty
/dev/null /dev/null

7.FOURC>

or

7.FOURC> p OUTFILES[DATAFILE]["path"]
/private/tmp/data1

8.FOURC>

Note, the special built-in name "pipe" is not included in OUTFILES. The spe-

cial built-in name "/dev/null" includes the full path in both "name" and

"path" to work with the standard macros that always refer to that special file

by the full path name.

PI — is a number-valued symbol with the value 3.14159... .

ROWS— is a number-valued variable set to the number of text rows on the user termi-
nal or workstation window. The value is used for formatting text-mode plots
and on-line help files. ROWSis generally automatically assigned a value from
the system terminal data base when spec starts up, or, if available, by using
the TIOCGWINSZcommand in the ioctl() system call whenever a value for ROWS
is needed.

S[] — is an array that will be filled with the hardware scaler contents when the com-
mand getcounts is executed.

SPEC — is string valued and set to the name by which spec is invoked, such as fourc.

SPECD — is string valued and set to spec’s auxiliary file directory. The default name
is compiled in when spec is installed, but can be overridden by the −D invoca-

tion option or by the SPECD environment variable.

TERM — is a user-assignable, string-valued variable. It is initialized to the user’s ter-
minal type as taken from the environment variable TERM. If not found in the

environment, it is set to terminal-type vt100.

USER — is string valued and is set to the login name of the current user.

VERSION — is string valued and is set to the version number of spec, as in 3.03.11 .

The values of A[] , S[] , DEBUG, HDW_ERR, DISPLAY , TERM, GTERM, ROWSand COLScan

be changed by the user.

REFERENCE MANUAL 67

Motor mnemonics obtained from the config file become built-in, immutable variables.

User-added code, such as the X-ray diffractometer geometry code, typically creates

other built-in variables, such as G[] , Q[] , U[] and Z[] .

Operators

The following tables summarize the operators available in spec. (Almost all these

operators work the same as in the C language, so a C-language reference manual

could be consulted to provide more detailed information on the use of unfamiliar op-

erators.) Operators that require integral operands use the integer part of noninte-

gral operands. The precedence rules give the evaluation order when multiple opera-

tors appear in the same expression.

spec stores number values as double precision floating point, which only has 52 bits

for the signifcand. The bitwise operators (<< , >> , & , ˆ , | , <<= , >>= , &= , ˆ= , |=) will

mask the operands to 52 bits. The result of the operation will be no more than 52
bits. The bit-not operator (˜) will mask the result to the low 52 bits. The modulus op-
erators (% and %=) will convert the operands to 64 bits, perform the operation using
64-bit integer arithmetic, then convert the result to a double for the return value.

Unary Operators

Unary operators have equal precedence, are evaluated right to left and have higher
precedence than the binary operators.

Operator Name Result

− Unary minus Negative of operand.
+ Unary plus Operand.
! Logical negation 1 if operand is zero, 0 otherwise.

++ Increment Increment the operand by one.

− − Decrement Decrement the operand by one.

˜ Bitwise not One’s complement of operand. (A tilde.)

When used as prefix operators, ++ and − − operate before the result is used in the ex-
pression. When used as postfix operators, the ++ and − − operations are done after

the current value of the operand is used in the expression.

68 REFERENCE MANUAL

Indirection Operator

The @character is a special unary operator that provides indirection when used in

front of a symbol name. The behavior is similar to the C language * indirection oper-

ator. In spec, the @operator allows reference to a variable whose name is the string

value of another variable. For example:

8.FOURC> a = " b"; b = PI; print a, @a
b 3.14159

9.FOURC>

Binary Operators

All binary operators have lower precedence than the unary operators. Binary opera-

tor precedence is indicated in the grammar rules that are listed on page 73, where

higher precedence operators are listed first, and operators with the same precedence
are listed on the same line. Binary operators with the same precedence are evalu-
ated left to right.

Operator Name Result (L is left operand, R is right)

∗ Multiplication L × R

/ Division L / R

% Modulus Remainder of L / R (operands are integers).
+ Addition L + R

− Subtraction L − R

< Less than 1 if L < R (or 0 if not).
> Greater than 1 if L > R (or 0 if not).

<= Less than or equal 1 if L ≤ R (or 0 if not).
>= Greater than or equal 1 if L ≥ R (or 0 if not).
== Logical equality 1 if L is equal to R (or 0 if not).

!= Logical inequality 1 if L is not equal to R (or 0 if it is).

&& Logical and 1 if both L and R are nonzero, otherwise 0.
|| Logical or 1 if either L or R are nonzero, otherwise 0.
<< Bitwise left shift L shifted left by R bits (both integers).

>> Bitwise right shift L shifted right by R bits (both integers).

& Bitwise and “Bitwise and” of integers L and R.
ˆ Bitwise exclusive or “Bitwise exclusive or” of integers L and R.
| Bitwise or “Bitwise or” of integers L and R.

Concatenation LR

REFERENCE MANUAL 69

If either of L or R are strings, the relational operators < , > , <= , and >= use the lexico-

graphic comparison provided by the C subroutine strcmp().

The concatenation operator comes into effect when expressions are combined sepa-

rated only by space characters. The resulting expression is the concatenation of the

string values of the constituent expressions. Concatenation is only allowed on the

right side of an assignment operator, in the arguments to the print command and in

the value assigned to a variable in a constant statement. Concatenation has lower

precedence than the other operators. For example,

9.FOURC> print "ab" "cd" 1 2 + 3 4
abcd154

10.FOURC>

Assignment Operators

Operator Name Result

= Equals L = R

+= Plus equals L = L + R

−= Minus equals L = L − R

∗= Times equals L = L × R

/= Divide equals L = L / R

%= Mod equals L = L % R

<<= Left-shift equals L = L << R

>>= Right-shift equals L = L >> R

&= Bitwise-and equals L = L & R

ˆ= Bitwise-exclusive-or equals L = L ˆ R

|= Bitwise-or equals L = L | R

Ternary Operator

spec, like the C language, has one ternary operator, which works in a manner simi-
lar to the if-else construction and uses the characters ? and : . Its use is

expression
1

? expression
2

: expression
3

where the result of this entire expression is expression
2

if expression
1

is nonzero, oth-

erwise expression
3
.

70 REFERENCE MANUAL

Flow Control

Conditional Statement

The forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

The expression is evaluated in both cases. If nonzero, the first statement is exe-

cuted. In the second form, if expression is zero, the second statement is executed.

Each else is always matched with the last else-less if within the same statement

block.

While Statement

The form for the while statement is

while (expression) statement

The expression is evaluated and the statement executed until expression is zero.

For Statement

The for statement comes in two forms. The first is

for (expression 1 ; expression 2 ; expression 3) statement

The flow expressed in this statement can be thought of as

expression 1
while (expression 2) {

statement
expression 3

}

Any of the expressions can be missing. A missing expression 2 is equivalent to

while (1)

REFERENCE MANUAL 71

The second form of the for statement is used with associative arrays. The construc-

tion

for (identifier in assoc-array) statement

will run through each element of the associative array assoc_array assigning to

identifier the string value of the index of each element. The elements will be

sorted using a “natural sort”. "Natural sort" means that consecutive digits are

treated as a single character and sorted according to their value as a group, such that

a10 will come after *a9, contrary to the order with strict lexicographical sorting.

For two-dimensional associative arrays, the construction

for (identifier in assoc-array [expr]) statement

will step through each element of assoc-array having expr has the first index.

Break Statement

The statement break terminates the smallest enclosing while or for loop.

Continue Statement

The statement continue passes control to the loop-test portion of the smallest enclos-
ing while or for loop.

Exit Statement

The statement exit terminates execution of the current parse tree and jumps control
back to command level just as if an error occurred or a ˆC was typed.

72 REFERENCE MANUAL

Grammar Rules

This syntax summary defines how all the built-in keywords, operators and commands

of spec can be combined. These grammar rules are similar to those given in stan-

dard C-language manuals. Operators are listed in order of precedence, with the high-

est precedence operators listed first.

The following terms are used in the grammar rules:

lvalue - “Left value”, something on the left side of an equals sign.

binop - A binary operator (+, −, etc.).

asgnop - An assignment operator (=, +=, etc.).

assoc-array - An associative (original-style) array.

assoc-elem-list - A space- or comma-separated list of associative array ele-

ments.

identifier - A variable.

identifier-list - A space- or comma-separated list of identifiers.
pattern - An alphanumeric string possibly containing the metachar-

acters ? or * .
pattern-list-opt - An optional space-separated list of patterns.
expression-list - A comma-separated list of expressions.

expr-opt - An optional expression.
[;] - A semicolon or a newline. (A semicolon after a statement

is optional if the statement is followed by a newline.)

Note, that in the following list, the entry

expression in assoc-array

is included in the rules of what constitutes an expression. This is a special expression
that evaluates to nonzero (or true) if assoc-array [expr] is an existing element of
the array, and zero (or false) otherwise. For a two-dimensional associative array,

expr
1

in assoc-array [expr
2
]

is nonzero if assoc-array [expr
2
][expr

1
] is an element of the array.

REFERENCE MANUAL 73

These are the grammar rules:

expression:

lvalue

numeric-constant

string-constant

(expression)

function (expression-list)

− expression

! expression

˜ expression

++ lvalue

− − lvalue

lvalue ++

lvalue − −

expression ? expression : expression

expression binop expression

expression in assoc-array

lvalue asgnop expression

expression , expression

expression expression

lvalue:

identifier

identifier [expression]

identifier [expression] [expression]

binop:

∗ / %

+ −

>> <<

> < <= >=

== !=

&

ˆ

|

&&

||

asgnop:

= += −= ∗= / = %= >>= <<= &= ˆ= |=

74 REFERENCE MANUAL

data-array-type

string

byte

ubyte

short

ushort

long

ulong

long64

ulong64

float

double

data-array-declaration:

array identifier[expression]

data-array-type array identifier[expression]

array identifier[expression][expression]

data-array-type array identifier[expression][expression]

compound-statement:

{ statement-list }

statement-list:

statement

statement statement-list

statement:

compound-statement

expression [;]

if (expression) statement

if (expression) statement else statement

while (expression) statement

for (expr-opt ; expr-opt ; expr-opt) statement

for (identifier in assoc-array) statement

break [;]

continue [;]

exit [;]

history expr-opt [;]

lscmd pattern-list-opt [;]

print expression-list [;]

global identifier-list [;]

constant identifier expression [;]

REFERENCE MANUAL 75

constant identifier = expression [;]

unglobal identifier-list [;]

delete assoc-elem-list [;]

delete assoc-array [;]

local identifier-list [;]

syms pattern-list-opt [;]

data-array-declaration [;]

local data-array-declaration [;]

global data-array-declaration [;]

shared data-array-declaration [;]

extern shared data-array-declaration [;]

def identifier string-constant [;]

rdef identifier expression [;]

undef identifier-list [;]

prdef pattern-list-opt [;]

lsdef pattern-list-opt [;]

memstat [;]

savstate [;]

reconfig [;]

getcounts [;]

move_all [;]

move_cnt [;]

sync [;]

76 REFERENCE MANUAL

Built-In Functions and Commands

These built-in functions and commands are described in the following sections.

UTILITY FUNCTIONS AND COMMANDS

System Functions Miscellaneous

chdir() unix() lscmd memstat gethelp() eval() spec_par()
time() date() history savstate whatis() eval2() sleep()

getenv() file_info() calc()

KEYBOARD AND FILE INPUT, SCREEN AND FILE OUTPUT

Controlling Output Files Reading From Keyboard Text Output
Files Input

open() on() getline() input() print fprintf() tty_cntl()
close() off() dofile() yesno() eprint spec_menu() tty_move()

qdofile() getval() printf() tty_fmt()
getsval() eprintf()

VARIABLES MACROS

global constant delete def prdef undef clone()
unglobal local array rdef lsdef strdef()

syms cdef()

STRING AND NUMBER FUNCTIONS

Math Functions String Regular Expr Conversion

exp() srand() cos() index() length() rsplit() asc()
log() rand() sin() split() sprintf() sub() bcd()

exp10() sqrt() tan() substr() sscanf() gsub() dcb()
log10() int() acos() gensub() deg()

pow() fabs() asin() match() rad()
atan2() atan()

DATA HANDLING AND PLOTTING FUNCTIONS OLD-STYLE

array_dump() array_copy() plot_cntl() fmt_read() h5_attr() data_grp() data_dump()
array_read() array_op() plot_move() fmt_write() h5_file() data_info() data_read()
array_pipe() array_fit() plot_range() fmt_close() h5_link() data_nput() data_pipe()
array_plot() splot_cntl() h5_data() data_get() data_plot()

CLIENT/SERVER FUNCTIONS data_put() data_fit()

prop_send() prop_watch() remote_cmd() remote_poll() encode() data_uop() data_anal()
prop_get() remote_eval() remote_stat() decode() data_bop()
prop_put() remote_async() remote_par()

HARDWARE FUNCTIONS AND COMMANDS

Moving and Motors Counting Misc

move_all motor_mne() read_motors() move_info() mcount() cnt_mne() reconfig
move_cnt motor_name() dial() user() tcount() cnt_name() set_sim()

sync motor_num() chg_dial() chg_offset() getcounts cnt_num() wait()
motor_par() get_lim() set_lim() counter_par() stop()

MCA (1D) Images (2D) Special Interfaces Sockets

mca_par() mca_spar() image_par() taco_io() tango_io() epics_par() sock_par()
mca_get() mca_sget() image_get() taco_db() tango_get() epics_get() sock_get()
mca_put() mca_sput() image_put() taco_dc() tango_put() epics_put() sock_put()
mca_sel() tango_db() em_io()

Serial GPIB VME PC Port I/O VXI Field Bus CAMAC

ser_par() gpib_par() vme_move() port_get() vxi11_par() ca_cntl()
ser_get() gpib_get() vme_get() port_getw() vxi11_get() fbus_get() ca_get()
ser_put() gpib_put() vme_put() port_put() vxi11_put() fbus_put() ca_put()

gpib_poll() vme32_get() port_putw() ca_fna()
gpib_cntl() vme32_put()

REFERENCE MANUAL 77

Utility Functions and Commands

All functions return a number or string value that may be used in an expression.

The return values of some functions are only of use in conditional expressions, so

their return values are given as true or false. The corresponding number values are

1 and 0, respectively.

System Functions

chdir() — Changes spec’s current working directory to to the user’s home directory

as obtained from the user’s environment variable HOME. Returns true or

false according to whether the command was successful or not. The value of

the built-in string variable CWDis updated to the current working directory.

chdir(directory) — As above, but changes to the directory directory , which must

be a string constant or expression.

unix() — Spawns an interactive subshell using the program obtained from the user’s
environment variable SHELL (or shell). Uses /bin/sh if the environment
variable is not set. Returns the integer exit status of the shell.

unix(command) — As above, but uses /bin/sh to execute the one-line command com-
mand, which must be a string constant or expression. Returns the integer exit
status of the command.

unix(command, str [, len]) — As above, but the argument str is the name of a
variable in which to place the string output from the command in the first ar-
gument. The maximum length of the string is 4096 bytes (including a null
byte). The optional third argument can be used to specify a larger size.

time() — Returns the current epoch in seconds. The UNIX epoch is the number of
seconds from January 1, 1970, 00:00:00 GMT. The value returned includes a

fractional part with microsecond resolution as provided by the host gettimeof-

day() system call.

date() — Returns a string containing the current date as

Tue Feb 7 21:02:23 EST 2017

date(fmt) — As above, but the output string is formatted according to the specifica-
tions in the string fmt . The format is passed to the standard C library strf-

time() function (see the strftime man page) with one addition: spec fills in the

format options %.1 through %.9 with the fractional seconds, where the single

digit specifies the number of decimal digits. For example,

78 REFERENCE MANUAL

print date("%m-%d-%Y %T.%.6")

would display

02-07-2017 21:04:57.927905

date(seconds [, fmt) — As above, but the returned string represents the epoch

given by seconds . See time() above.

getenv(string) — Returns the value of the environment variable represented by the

string string . If the environment variable is unset, the null string is re-

turned. Environment variables are exported to spec by the invoking shell pro-

gram.

file_info(filename [, cmd]) — Returns information on the file or device named

filename . With a single filename argument, file_info() returns true if the

file or device exists. If the argument filename is the string "?" , the possible

values for cmd are listed. If filename is the string "." , spec uses the informa-

tion from the last stat() system call made using the previous argument for
filename , avoiding the overhead associated with an additional system call.

Possible values for cmd and the information returned follow. Note that the first
set of commands parallel the contents of the data structure returned by the
stat() system call, while the second set of commands mimic the arguments to
the test utility available in the shell.

"dev" — The device number on which filename resides.

"ino" — The inode number of filename .

"mode" — A number coding the access modes and file attributes.

"nlink" — The number of hard links for filename .

"uid" — The user id of the owner.

"gid" — The group id of the owner.

"rdev" — The device ID if filename is a block or character device.

"size" — The size in bytes of filename .

"atime" — The time when filename ’s data was last accessed.

"mtime" — The time when filenames ’s data was last modified.

"ctime" — The time when filenames ’s attributes were last modified.

"isreg" or "−f" — Returns true if filename is a regular file.

"isdir" or "−d" — Returns true if filename is a directory.

"ischr" or "−c" — Returns true if filename is a character device.

"isblk" or "−b" — Returns true if filename is a block device.

"islnk" or "−h or "−L" — Returns true if filename is a symbolic link.

"isfifo" or "−p" — Returns true if filename is a named pipe (sometimes
called a fifo).

REFERENCE MANUAL 79

"issock" or "−S" — Returns true if filename is a socket.

"-e" — Returns true if filename exists.

"-s" — Returns true if the size of filename is greater than zero.

"-r" — Returns true if filename is readable.

"-w" — Returns true if filename is writable.

"-x" — Returns true if filename is executable.

"-o" — Returns true if filename is owned by you.

"-G" — Returns true if filename is owned by your group.

"-u" — Returns true if filename is setuid mode.

"-g" — Returns true if filename is setguid mode.

"-k" — Returns true if filename has its sticky bit set.

"lines" — Returns the number of newline characters in the file. If the file

does not end with a newline, the count is increased by one.

file_info(pid , " alive") — Return true if the process associated with the process

ID pid exists.

Miscellaneous

lscmd — This command lists all the built-in commands, functions and keywords.

lscmd pattern ... — As above, except only names matching pattern are listed.

memstat — Shows the current memory usage.

eval(string) — Parses and executes the string string , which can contain one or
more statements or statement blocks. If the last statement in the string
string is an expression, its value is returned. A single number, a quoted
string or a single variable is considered an expression and its value will be re-
turned. However, a single uninitialized variable will generate an error.

If the last statement is not an expression, eval() returns true (nonzero) if

there were no errors executing the statement(s). The type of errors that nor-
mally cause spec to reset to command level (syntax errors, for example) will
cause eval() to return false rather than reset to command level.

To distinguish between a true (1) or false (0) return value and an expression

returning a value, eval() assigns a code to the built-in global variable
EVAL_RESULT(as of spec release 6.04.05). If EVAL_RESULTis −1, there was an
error parsing or executing the string, or an attempt was made to return the

value of a single uninitialized variable. If EVAL_RESULTis 1, the string was a

statement or was a statement list that ended in a statement. If EVAL_RESULT
is zero, the string or last statement in the string was an expression.

80 REFERENCE MANUAL

An empty string or a string containing only white-space characters is a special

case. EVAL_RESULTis set to 1 to indicate a statement, but the return value of

eval() is zero.

If the string string contains multiple statements, the value of EVAL_RESULT
will 0 or 1 based on the result of the last statement. If any of the statements

generate an error, EVAL_RESULTwill be set to −1 and the parsing and execution

of the statements in the string string is abandoned.

If there is an error parsing or executing the string, in most cases, an error mes-

sage will be assigned to the built-in global variable EVAL_ERR(as of spec re-

lease 6.04.05).

EVAL_RESULTand EVAL_ERRare reset to 0 and "" respectively on each call of

eval() . With nested calls to eval() , EVAL_RESULTand EVAL_ERRwill be asso-

ciated with the most recently completed call.

Note, local symbols defined in the statement block in which eval() is used are
not visible to the statements in the string string . Use eval2() , below, to ac-
cess such symbols.

eval2(string) — Similar to eval() , but local symbols in the statement blocks sur-
rounding the eval2() function call are visible and can be read or modified. To
use local variables within the eval2() string that won’t be associated with lo-
cal variables of the same name outside the eval2() call, use curly brackets to
enclose the statements with the local declaration within the string string .

sleep(t) — Suspends execution for a minimum of t seconds, where t may be non-in-
tegral. Actual sleep times may vary depending on other activity on the system
and the resolution of the system clock. Returns true. Can be interrupted with
ˆC .

gethelp(topic [, flags]) — Displays the help file topic on the screen. If topic
contains a / , the argument is treated as an absolute or relative pathname.
Otherwise, the argument refers to a file in the spec_help (or help) subdirectory
of the SPECDdirectory. Returns non-zero if the file couldn’t be opened.

The SPECD/spec_help/.links contains a list of alternative help files names and

topics. If an entry matching topic is listed in .links, the corresponding file will
be displayed.

Prior to spec release 6, spec contained an internal help file parser and format-

ter. With release 6, help files are formatted using the standard groff utility

and paginated using the standard less utility.

If the argument topic is a pathname and the optional flags argument has bit
0x02 set, spec will use groff formatting macros appropriate for help files

REFERENCE MANUAL 81

written using pre-release 6 conventions.

Current spec help files are written in the format called reStructuredText. The

.rst files are included in the help subdirectory of the spec distribution. The

spec distribution also includes versions of the help files converted to groff for-

mat and versions preformatted for pagination for a screen width of 80 columns.

It is these files that are copied to the directories SPECD/spec_help/help_man and

SPECD/spec_help/help_pre , respectively. The preformatted files are displayed if

the current screen width is between 80 and 92 columns or if the groff utility is

unavailable. Otherwise the groff files are processed and displayed to fit the

current screen width. The gethelp() function will also create commands to

process .rst files and pass them through groff and the paginator, but only if

Python and the Python docutils package are installed.

The paths and options for the system tools used by spec’s help facility are con-

figured in the file SPECD/spec.conf .

whatis(string) — Returns a number that encodes what the identifier in string rep-
resents. The return value is a two-word (32-bit) integer, with the low word
containing a code for the type of object and the high word containing more in-
formation for certain objects.

High Word Low Word Meaning

0 0 Not a command, macro or keyword.
0 1 Command or keyword.

length 2 Macro (length is in bytes).
0x0001 4 A data array or data array element.
0x0010 4 Number-valued symbol.
0x0020 4 String-valued symbol.
0x0040 4 Constant-valued symbol.
0x0100 4 Associative array name.
0x0200 4 Built-in symbol.

0x0400 4 Global symbol.
0x0800 4 Unset symbol.
0x2000 4 Immutable symbol.

0x4000 4 Local symbol.

0x8000 4 Associative array element.

Most type-4 symbols have more than one of the high-word bits set.

The following two macros uses the whatis() function. The first determines

whether or not a symbol has been given a value by looking at the unset bit.

The second checks whether or not a symbol is the name of a macro.

82 REFERENCE MANUAL

http://docutils.sourceforge.net/rst.html

10.FOURC> def unset(x) ’{ return(whatis(x)&0x8000000? 1:0) }’

11.FOURC> def is_macro(x) ’{ return(whatis(x)&2? 1:0) }’

12.FOURC>

whatis(string , 1) — With two arguments, returns a printable string explaining in

words what kind of thing the thing named in string is to spec.

spec_par(par [, value]) — Sets internal parameters. Typing spec_par("?") lists

the available parameters, their current value and the default value, if differ-

ent. The command spec_par("set_defaults?") sets all parameters to their

default values. The currently available parameters are:

"auto_file_close" — The auto-file-close option is available to automatically

close output files that haven’t been accessed for some interval of time.

The parameter units are hours, and the parameter can have nonintegral

values. When the auto-close option is enabled, each time an on() ,
off() , open() , close() or fprintf() function is called, spec will check
its list of opened output files. Any files which have not been written to
for the length of time given by value hours will be closed. Enabling this
option can help prevent errors when your macros or commands do not
close files when appropriate, resulting in spec running out of resources
to open additional files.

As files are opened automatically when sent output, auto-close mode op-
erates transparently for the most part. However, if you change to a dif-
ferent working directory between the time the file is first opened and
subsequently automatically closed, and if the file is not opened by an ab-
solute path name, the next time you refer to the file, spec will reopen it
using a relative path based on the current directory.

If value is zero, the mode is disabled. By default, the mode is initially
disabled.

"auto_hdw_poll" — When automatic hardware polling is turned on (which it

is, by default), spec will automatically poll busy motor controllers,

timers and acquisition devices to determine when they are finished. For
some devices, spec needs to perform an action, such as starting a motor
backlash move, when the device is finished with its current business.

Without automatic hardware polling, a call to the wait() function is

necessary. A reason to turn it off may be to reduce the amount of debug-
ging output during hardware debugging.

"check_file_names" — The check-file-names option can prevent you from (acci-
dentally) creating files with names containing nonstandard characters.
When enabled, if a file name passed to the on() , open() or fprintf()

REFERENCE MANUAL 83

functions contains any of the characters ()[]{}|$’‘*?;!&<>" , the

space character, any control characters or any characters with the

eighth bit set, and the file doesn’t already exist, spec will print an error

message and the function will fail. By default, this mode is on.

"confirm_quit" — If set, spec prompts with a “Really quit?” message when

the quit or ˆD commands are entered. The question must be answered

in the affirmative to exit the program. The value for "confirm_quit" is

not saved in the state file. The option must be set again on each spec
invocation.

"elog_timestamp" — The time interval for the optional time stamps for the

elog error file capability is set using this option. The units of the

"elog_timestamp" parameter are minutes. The default value is five

minutes. Note, time stamps are only added before a command or error

message is logged, so that the interval between time stamps can be

greater than that specified if no commands are being typed or errors

generated.

"epics_timeout" — Sets the default timeout for channel access ca_pend_io()

calls on EPICS. The default value is 0.5 seconds. This option appears
only when spec is linked with the EPICS channel access libraries.
Timeout values for individual process variables can still be changed
with the epics_par() function. This parameter can be set in the config

file.

"flush_interval" — The flush-interval parameter controls how often spec
flushes output to the hard disk or other output device. Traditionally,
spec flushed output after each print command. However, as some users
report that this frequent flushing introduces considerable delays when
the output device is to an NFS-mounted file system, the flushing inter-
val can now be controlled. The "flush_interval" parameter specifies
how many seconds to allow between output buffer flushing. The default

value is 0.5 seconds. If the interval is set to zero, the traditional fre-

quent-flushing behavior will be restored. Output to the screen is still
flushed immediately. Output is also flushed each time the main spec
prompt is issued.

"HKL_rounding" — Traditionally, spec rounded values for H, K , and L (and
other geometry values derived from motor positions) to five significant

digits for configurations using reciprocal space calculations. The round-

ing is off by default. It can be turned on using the command
spec_par("HKL_rounding", 1e5) where the argument indicates the
magnitude of the rounding, i.e., one part in 1e5, for example. Note, val-

ues with an absolute value less than 1e-10 are still rounded to zero

whether or not the optional rounding is turned on.

84 REFERENCE MANUAL

"hdw_poll_interval" — When the wait() function is called to wait for polled

motors, timers or other acquisition devices to finish, spec sleeps for a

small interval between each check of the hardware. Use this

spec_par() option to change that interval. The units of the parameter

are milliseconds, and the default sleep time is 10msec. A value of zero is

allowed, though not recommended if the computer is being used for any-

thing else.

"history_join" — As of spec release 6.06.01, multi-line commands entered at

the spec prompt are saved as one item in the history list. This option

allows that mode to be disabled.

"history_size" — Configures the number of commands to be saved in the his-

tory list. The value can be any positive integer up to a set limit, cur-

rently 32768. Prior to spec release 6.05.01, the history size was fixed at

1000.

"keep_going" — Normally, when taking commands from a command file, spec
resets to command level and the main interactive prompt when there
are syntax errors in the file, certain floating point exceptions, references
to unconfigured hardware, hardware access errors, along with a number
of other errors. When the "keep_going" option is set, spec will keep
reading and executing commands from a command file no matter what
errors occur. When there is an error, the next line from the current com-
mand file will be read. Note, depending on where the error is in a file,
reading subsequent lines may generate more errors, particularly if the
error occurs inside a statement block.

"legacy_limit_check" — Prior to spec release 6.03.10, when a motor stopped,
if either limit status was active, spec would report the motor hit a limit.
Depending on how the controller reported the limit condition, this be-
havior could be an issue if the motor had executed a small move off an

active limit, but hadn’t moved enough to clear the limit switch. Even
though the move was awa y from the limit, the limit status was still ac-
tive, and spec would behave as if the move terminated due to a limit.

Release 6.03.10 improves the logic so that the direction of the move is
checked against the limit status, and no action is taken if the active
limit is not in the direction of the move. It turns out that if spec’s code

for a particular motor controller had the sense of the plus and minus

limits reversed, the old code worked, but the new code does not. The er-
ror in limit sense was found and fixed with one controller model. If the
issue is found with additional controllers, CSS will correct the code. In

the meantime, the "legacy_limit_check" option can be set to a

nonzero value to enable the pre 6.03.10 behavior.

Note, motors still stop when they hit a limit switch. The behavior that

REFERENCE MANUAL 85

is affected concerns whether spec notices, prints a message and perhaps

aborts other moves or a scan.

"modify_step_size" — Normally, spec doesn’t allow users to modify the motor

step-size parameter with the motor_par() function, as the consequences

are generally undesirable. However, in the rare circumstance that it is

necessary, this parameter allows you to enable such modifications.

"old_shared" — With spec release 5.02.01, the structure of the shared array

header was changed so that the data portion of the array would lie on a

memory page boundary. To allow compatibility with applications built

with the old header structure, the "old_shared" option can be set.

However, this option can only be set as a −o command line start-up op-

tion, and the parameter is not saved in the state file. It must be set

each time spec is invoked.

"parse_units" — When parsing of units is turned on, numbers typed as input

to spec’s parser with one of the following suffixes appended will auto-

matically be multiplied by the corresponding factor.

1r 57.2958 radian
1mr 0.0572958 milliradian
1d 1 degree
1md 0.001 millidegree
1mm 1 millimeter
1um 0.001 micrometer
1m 0.0166667 minute
1s 0.000277778 second

Note, however, suffixes on numbers converted from strings or entered
using the getval() function are not parsed. The only known use for
unit-suffix parsing is with the user-contributed macros in the file
macros/units.mac. These macros require that unit suffixes be supplied
for all motor position arguments in the standard spec macros. The de-

fault is for this mode to be off.

"show_prdef_files" — When this mode is on, the source file for each macro

definition is displayed with the prdef command. The default is for this

mode to be on.

"specwiz" — Allows spec administrators to gain access to motors locked out in

the config file to ordinary users. This feature allows the administrator
to position the motors without having first to go into the configuration
editor to change access modes. Entering spec_par("specwiz", 1)
causes spec to prompt for the “Wizard’s password”. If entered correctly,

the characters _WIZ are appended to the spec prompt to remind the

86 REFERENCE MANUAL

administrator of the special powers, and motors configured with pro-

tected status can be moved. Entering spec_par("specwiz", 0) dis-

ables the special mode.

spec looks for the encrypted password belonging to the spec_wiz (or

specwiz) user in the files SPECD/passwd, /etc/shadow, and

/etc/passwd in turn. If a shadow password file is used, ordinary users

won’t be able to read it, and the normal password file won’t contain the

encrypted password.

The spec distribution includes a wiz_passwd utility the can be used to

create a passwd file in the spec auxiliary file directory that contains

just the entry for the spec_wiz user. The SPECD/passwd file should

probably be owned and writable only by root or the spec administrator.

Note, the standard macros onwiz and offwiz are convenient wrappers

for the specwiz feature.

"use_sem_undo" — This flag relates to whether the SEM_UNDOflag is set when
semaphores are used. It exists to get around a memory leak bug ob-
served with some releases of the Solaris 2 operating system. The flag
should be ignored unless you are instructed otherwise by CSS.

"warn_not_at_pos" — When enabled, spec prints a warning message when-
ever a motor doesn’t reach its final position (as of release 5.08.02-8).

calc(i) — Calls a user-added function having code i . Codes are assigned in the dis-
tribution source file u_hook.c. Returns a user-supplied value or zero if there is
no user-supplied value.

calc(i , x) — As above, but passes the argument x to the user-supplied function.

The geometry calculations that transform motor positions to reciprocal space
coordinates and vice versa are implemented using calls to calc() . A descrip-
tion of the particular calls implemented for the four-circle diffractometer are in
the Four-Circle Reference. See page 225 in the Administrator’s Guide for infor-
mation on how to include other user-added functions in the program.

history — This command lists the most recently entered commands. The maximum

number of commands can be set using the spec_par("history_size") com-

mand (see page 85) and defaults to 1000. See the description of the command-

recall (history) feature on page 56.

history N — As above, but only prints the N most recent commands. If N is negative,
the commands are printed in reverse order.

savstate — Writes the current state to the state files.

REFERENCE MANUAL 87

The state file contains the variables, macro definitions, output file names and

additional parameter values unique to each user, terminal and diffractometer.

A separate file stores the user’s command line history. The state files preserve

the current situation when the user leaves the program, so that the same situ-

ation can be restored when the user later returns to the program.

spec can be invoked with a −u user flag and a −t tty flag. These flags instruct

the program to initialize the current user’s state from the files associated with

the other user and/or terminal. Subsequent savstate commands access the

user’s natural state file.

The savstate command does not save the state files until the entire parsed

mini-program in which the command occurs has been run. spec also automat-

ically does a savstate before re-reading the hardware config file when the re-
config command is entered and when spec exits.

Note, a show_state utility is included in the spec distribution. This utility can
display the contents of spec state files. Type show_state − to see the utility’s
usage message.

Keyboard and File Input, Screen and File Output

Controlling Output Files

With this group of functions, the names "tty" and "/dev/tty" , when used for file-
name, are special and refers to the user’s terminal. The names "null" and
"/dev/null" are also special and when used as as an output device, result in no out-
put. The name "pipe" is also special, but only when spec is invoked with the −p

flag, where it refers to the special data stream from spec to a front-end program.

open() — Lists all open files, including their directories, and indicates which files are
currently turned on for output. Returns zero.

open(filename) — Makes filename , which is a string constant or expression, avail-

able for output. Files are opened to append. Returns zero for success, −1 if the

file can not be opened or if there are too many open files. If the spec_par()
"check_file_name" option is on, and if filename contains any of the charac-
ters ()[]{}|$´`*?;!&<>" , spec will print an error message and the function

will return an error, unless the file already exists.

close(filename) — Closes filename and removes it from the table of files available
for output. Returns zero for success, −1 if the file wasn’t open. Files should be
closed before modifying them with editors.

88 REFERENCE MANUAL

on() — Lists all open files and indicates which ones are currently turned on for out-

put.

on(filename) — Turns on filename for output. All messages, except for some error

and debugging messages, but including all print and printf() output, are

sent to all turned-on devices. If filename has not been made available for out-

put with the open() function, it will be opened. Returns zero for success, −1 if

the file can’t be opened or if there are too many open files.

off(filename) — Turns off output to filename , but keeps it in the list of files avail-

able for output. If this was the last turned-on file or device, tty is turned back

on automatically. Returns zero for success, −1 if the file wasn’t open.

spec remembers the directory the files are in when they are first opened. If the user

changes spec’s current directory, open files may be referenced either by the name

with which the files were opened or by the correct path name relative to the current

directory. If an open file disappears from the file system (for example, if a user re-
moves the file using a subshell), the next time the file is written to, spec prints a
warning message and creates a new instance of the file.

Files should be closed before attempting to edit them outside of spec.

Errors during parsing or execution of commands, or typing a ˆC turns off all open
files except log files (see next section).

Log Files (log, dlog, elog, tlog)

Four types of log files can be created for debugging or archiving purposes. The name
or extension establishes the type of log file created. A regular log file is a file with a
name beginning with the characters log or ending with the characters .log. All out-
put sent to any device is sent to a log file.

A file beginning with dlog or ending with .dlog will collect all output sent to any de-

vice as does a regular log file, but debugging messages (generated when a value is as-

signed to the built-in variable DEBUG) are only written to such a file, not to the screen
or any other file or device.

A file beginning with elog or ending with .elog records typed commands, error mes-

sages and optional time stamps. The file is intended to be useful to administrators

trying to diagnose user problems. Commands entered at the spec prompt are logged
prefixed by a #C. Error messages produced by the built-in C code or generated by the
eprint or eprintf() built-in keywords, are logged prefixed by a #E . If time stamps

are enabled (via the spec_par() "elog_timestamp" option), the UNIX epoch and the

corresponding date string are logged (at the time-stamp interval) prefixed by a #T .

REFERENCE MANUAL 89

Finally, a file beginning with tlog or ending with .tlog collects output sent to the

"tty" device (the screen). Unlike regular log files, output sent to other files or de-

vices will not be saved to a tlog file.

For all types of log files, output is not turned off on errors or ˆC interrupts, and out-

put generated by functions that “paint” the screen, such as tty_fmt() , tty_move() ,

plot_move() , show_help() , spec_menu() and data_plot() , isn’t written to the

files.

Reading From Files

The first function below is for reading strings from a file one line at a time. The sec-

ond and third functions cause spec to switch its source of command input from the

keyboard to the specified files.

getline(file [, arg]) — This function reads successive lines from the ASCII file
file each time it is called and returns the string so obtained, including the
trailing newline. If arg is the string "open" , the function returns zero if the
file can opened for reading. Otherwise −1 is returned. If arg is "close" , the
file is closed and zero is returned. If arg is zero, the first line of the file is re-
turned. If only the first argument is present, the next line of the file is read
and returned. At the end of the file, a −1 is returned.

The previous file, if any, is closed and the new file is opened automatically
when the filename argument changes.

To distinguish between an end of file, an error or a literal −1, getline() as-
signs a value to a built-in variable named GETLINE_EOF (as of spec release
6.03.05). The value of GETLINE_EOFwill be 1 if there was an end-of-file condi-
tion on the read of the file, −1 if there was an error reading the file or if the file

couldn’t be opened and zero if the read was successful.

dofile(file [, line_num | search_pattern]) — Queues the file file for reading com-
mands. file must be a string constant or expression. Returns nonzero if the

file doesn’t exist or permit read access. An optional second argument can spec-

ify a line number or a text pattern that will be used to locate the point in the
file to begin reading. If the argument is an integer, the number specifies at
which line to start reading the file. (Currently, only positive integers are al-

lowed.) If the argument is anything else, it is considered a search string, and

text is read from the file starting at the first line containing that search string.
The metacharacters * , which matches any string, and ? , which matches any
single character, are allowed in the search string. Initial and trailing white

space is ignored in the file.

90 REFERENCE MANUAL

qdofile(file) — As above, but does not show the contents of the file on the screen as

the file is read.

Normally, most errors that occur while reading from a command file cause spec to re-

set to the level of the main interactive prompt with any open command files then

closed. The spec_par() "keep_going" option is available to override that behavior.

See spec_par() on page 85.

When a command file is opened within a statement block, the source of input isn’t

switched to the command file until all the commands in the statement block are exe-

cuted. Thus it isn’t possible to execute commands from a command file within a

statement block. Note, though, the getline() (on page 90) function is available to

scan strings from files.

When multiple command files are queued on a single command line, the input source

can only change after the current line is exhausted, as the following example demon-

strates:

12.FOURC> print "hi";dofile("file1");dofile("file2");print "bye"
hi
bye

FOURC.2> Reading "file2".
print "This is text from file2"
This is text from file2

FOURC.1> Reading "file1".
print "This is text from file1"
This is text from file1

13.FOURC>

Here file1 contains the single line print "This is text from file1" , and file2

contains print "This is text from file2" .

Keyboard Input

input() — Reads a line of input from the keyboard. Leading white space and the
trailing newline are removed and the string is returned. Returns the null
string "" if only white space was entered. Example:

REFERENCE MANUAL 91

13.FOURC> def change_it ’{
14.quot> local it
15.quot> printf("Change it? ");
16.quot> if ((it=input()) != "")
17.quot> change_mac(it)
18.quot> }’

19.FOURC>

input(prompt) — As above, but prompts with the string prompt . Examples:

19.FOURC> input("Hit return when ready ... ")
Hit return when ready ... <return>

20.FOURC>

input(n) — This function behaves differently depending on whether the input source

is the keyboard or a pipe from another program (where spec is invoked with

the −p fd pid option, with nonzero fd .)

In the usual case, if n is less than or equal to zero, the tty state is set to
“cbreak” mode and input echo is turned off. Then input() checks to see if the
user has typed a character and immediately returns a null string if nothing
has been typed. Otherwise, it returns a string containing the single (or first)
character the user typed. If n is less than zero, the cbreak, no-echo mode re-
mains in effect when input() returns. If n is greater than zero, the normal tty
state is restored (as it is also if there is an error, if the user types ˆC or if the
user enters the exit command). Also, no characters are read and the null
string is returned. The normal state is also restored before the next main
prompt is issued, whether due to an error, a ˆC , or through the normal flow of
the program.

On the other hand, when spec is invoked with the −p fd pid option, with

nonzero fd , input() reads nothing but does return the number of characters
available to be read. If n is nonzero, input() simply reads and returns a line
of text, as if it had been invoked with no argument.

yesno(val) — Reads a line of input from the keyboard. The function returns 1 if the

user answers with a string beginning with Y , y or 1 . The value of val is re-
turned if the user simply enters return. Otherwise the function returns zero.

yesno(prompt , val) — As above, but prompts the user with the string prompt . The

characters " (YES)? " are appended to the prompt string if val is nonzero.

Otherwise the characters " (NO)? " are added.

getval(val) — Reads a line of input from the keyboard. If the user enters a value,
that value is returned. The value of val is returned if the user simply enters

return. The function works with both number and string values.

92 REFERENCE MANUAL

getval(prompt , val) — As above, but prompts the user with the string prompt . The

string is printed followed by the current value of val in parenthesis, a question

mark and a space. For example,

20.FOURC> DATAFILE = getval("Data file", DATAFILE)
Data file (pt100.133)? <return>

21.FOURC>

getsval(prompt , val) — Like getval() above, prompts the user with the string

prompt , if present, then waits for a user response. The value of val is re-

turned if the user simply enters return. If the prompt string prompt is

present, the string is printed followed by the current value of val in parenthe-

sis, a question mark and a space. Unlike getval() , this function does not con-

vert hexadecimal or octal input (number strings that begin with 0, 0x or 0X) to

the corresponding decimal value. Rather, the getsval() function returns the

literal string as entered.

Text Output

print a [, b ...] — Prints the string value of each argument, adding a space be-
tween each string. If the argument is an associative array, each element of the
array is printed in a list, as in:

21.FOURC> print mA
mA["0"] = 2
mA["1"] = 0
mA["2"] = 1
mA["3"] = 3

22.FOURC>

If the argument is a data array, the contents of the array are printed in a com-
pressed format, as in:

22.FOURC> array data[64][64]; data[0] = 1; data[1] = 2
23.FOURC> print data
{{1 <64 repeats>}, {2 <64 repeats>}, {0 <64 repeats>} <62 repeats>}

24.FOURC>

eprint a [, b ...] — As above, except that if an error-log file is open, the gener-
ated string will also be written to that file prefixed by the #E characters.

printf(format [, a ...]) — Does formatted printing on the turned-on output de-
vices. format contains the format specifications for any following arguments.

See the description of printf() in any C-language manual. Returns true.

REFERENCE MANUAL 93

eprintf(format [, a ...]) — As above, except that if an error-log file is open, the

generated string will also be written to that file prefixed by the #E characters.

fprintf(file_name , format [, a ...]) — Does formatted printing on file_name .

All other devices (except log files) are turned off while the string is printed.

The specified file is opened, if necessary, and remains open until closed with

the close() function.

tty_cntl(cmd) — Sends terminal-specific escape sequences to the display. The se-

quences are only written to the "tty" device and only if it is turned on for out-

put. The sequences are obtained from the system terminal-capability data

base using the value of the environmental variable TERM. The following values

for cmd are recognized:

"ho" — Move the cursor to the home position (upper left corner).

"cl" — Clear the screen.

"ce" — Clear to the end of the line.

"cd" — Clear from current position to the end of the screen.

"so" — Start text stand-out mode.

"se" — End text stand-out mode.

"md" — Start bold (intensified) mode.

"me" — End bold mode.

"us" — Start underline mode.

"ue" — End underline mode.

"mb" — Start blink mode. (Note, xterms don’t blink.)

"mh" — Start half-bright mode.

"mr" — Start reverse video mode.

"up" — Move cursor up one line.

"do" — Move cursor down one line.

"le" — Move cursor left one space.

"nd" — Move cursor right one space (nondestructive).

"resized?" — A special option that updates the ROWSand COLSvariables in the
event the window size has changed and returns a nonzero value if the
window size has changed since the last call to tty_cntl("resized?") .

Returns true if cmd is recognized, otherwise returns false.

tty_move(x , y [, string]) — Moves the cursor to column x and row y of the dis-
play, where column 0, row 0 is the upper left corner of the screen. If the third
argument string is present, it is written as a label at the given position. The

sequences and string are only written to the "tty" device and only if it is

turned on for output. Special tty control sequences of the form \[xx] , where
xx is one of the codes listed for the tty_cntl() function above, can be used

94 REFERENCE MANUAL

with string . Negative x or y position the cursor relative to the right or bot-

tom edges of the screen, respectively. Relative moves are possible by adding

±1000 to x or y position arguments. Both coordinates must specify either rela-

tive or absolute moves. If one coordinate specifies a relative move, the absolute

move in the other coordinate will be ignored. Please note, not all terminal

types support relative moves. Returns true.

tty_fmt(x , y , wid , string) — Writes the string string to the screen starting at col-

umn x and row y , where column 0, row 0 is the upper left corner of the screen.

The string is only written to the "tty" device and only if it is turned on for

output. If string is longer than the width given by wid , the string is split at

space characters such that no line is longer then wid . Newlines in the string

are retained, however. The function will truncate words that are wider than

wid and drop lines that would go off the bottom of the screen. Special tty con-

trol sequences of the form \[xx] , where xx is one of the codes listed for the

tty_cntl() function above, can be used with string . Negative x or y position
the cursor relative to the right or bottom edges of the screen, respectively. The
function returns the number of lines written.

spec_menu(menu [, modes [, dumbterm]]) — Creates an interactive menu from speci-
fications in the associative array menu. The menu can be used for configuring
macros and other spec options. The standard spec macros setplot , setshow ,
mstartup and plotselect all use the spec_menu() function. When the menu
is active, the user can use arrow and control keys to navigate the options and
edit strings. While waiting for input in spec_menu() , spec will continue to
poll hardware and respond to client commands if in server mode, (just as spec
does while waiting for input at the main command prompt).

The menu argument is a two-dimensional associative array that completely de-
scribes the menu as detailed below. The first index of the array is a number

that identifies an item. The second index of the array is a string that matches
one of a set of keys that identify an attribute for the item. The value of the
array element depends on the key.

The optional modes argument is a single value where each bit can be associ-

ated with a menu item. Up to 52 items may have associated bits.

If the number of menu items plus the number of lines needed to display the
hints and "info" strings is greater than the number of rows in the terminal

window, the menu items will be scrollable. The number of additional lines

above or below the visible window will be displayed in the left of the screen.
Navigating past the top or bottom will automatically scroll the menu.

If the width of the menu is greater than the width of the window, the menu

items will be compressed or scrolled horizontally, to fit the available space.

REFERENCE MANUAL 95

If dumbterm is nonzero, spec_menu() will not use cursor positioning. Instead,

the menu options will be displayed one at a time in sequence and the user will

be prompted for a value. In this mode, entering a single - for any response will

jump back and prompt again for the previous item in the sequence.

The function will return a possibly modified value for modes , reflecting the

user’s choices. If the menu is exited with ˆC or the x command, the values of

the menu items on entry are restored to their starting values.

Each item selected by the first index into the menu[][] array can have various

attributes configured via the following string keys placed in the second array

index.

The "title", "head" and "subhead" items don’t have any other modifiers. All

other items require at least a "desc" key. An item with a "desc" key also

needs at least one of "bit", "value", "svalue", "@" or "list" . The other

keys are optional.

"title" — The title for the menu. No further attributes apply to a "title"
item. Only one title will be displayed, and it will be displayed at the top
of the page.

"width" — The width of the menu. If not specified, the entire window will be
used.

"head" — A section header for the menu. It will be preceded by a blank line.

"subhead" — A subsection header for the menu. It will not be preceded by a
blank line.

"desc" — A required descriptive text string for each item. The string is dis-
played when prompting for the value. A null description creates a blank
line.

"info" — Optional text that gives a description of the parameter. The "info"
text is displayed only when the current item is active. The text will be
formatted for width using the rules of the tty_fmt() function. Format-
ting will work best if there are no embedded newlines in the string.

The value of a menu item is modifiable if at least one of the following five keys

is included in the item description.

"bit" — Associates a bit in the modes argument to this item. The element
value should be a single bit and each item in the array that has a bit set
should have a unique value. The associated bit will be set or cleared in

the return value of spec_menu() . Also, a "bit" attribute can be associ-

ated with items that have a "value" , "svalue" , "toggle" or "list" at-
tribute so that such items can be enabled or disabled for editing using
the "bit_and" , "bit_or" and "bit_not" attributes. Currently, bits 0

through 51 can be used.

96 REFERENCE MANUAL

"toggle" — Similar to the "bit" key in that the value can be toggled on or off,

but there is no limit to the number of such items and no connection to

the modes argument. The item’s value contains the initial state on entry

and the selected state when spec_menu() returns.

"choices" — For "bit" and "toggle" items, provides prompt strings to re-

place the default YES and NO. The choices are provided in one colon-

delimited string, for example, "ENABLE:DISABLE" or "ON:OFF" . The

choices don’t need to be capitalized and can include spaces. The first

choice is associated with the value of one and the second with zero.

"value" — Indicates a number value is wanted. Also used to hold the "list"
item selection. This item’s value will be modified. Not used if the "@"
indirection key is present. Note, the number value can be entered as an

expression which will be evaluated with the result displayed.

"svalue" — Indicates a string value is wanted. Can also be used to select the

current "list" item. This item’s value will be modified. Not used if the

"@" indirection key is present.

"list" — Presents a list of possible values, only one of which can be selected.
The selection is set and returned in "value" , "svalue" or indirectly via
the "@" key. Use "value" to indicate selection based on position in the
list, counting from one. Use "svalue" to indicate selection based on a
matching strings. If "@" is used, spec will use a number or string as ap-
propriate. By default, one or more space characters separate the list
items. An alternate delimiter character or string can be specified using
the "delim" attribute.

"@" — The value of this element contains the string name of a spec variable
that is to be modified. If its current value is a number, then the rules for
entering number values will be followed. If its current value is a string
or the parameter is unset, the string rules will be followed. This key
takes precedence over "value" or "svalue" attributes. Names of

scalars and associative array elements are allowed, but data array ele-

ments are not. If the named variable doesn’t exist, spec_menu() will
display the variable name and "not found" as the value.

"format" — Can be used to set an alternative printf() format for display of a

number-valued item. For example, "0x%X" can be used to display a
value in hexadecimal. In fact, the format can be used to specify the
same number value in multiple formats, such as "hex=0x%x dec=%d".

The default format is "%.9g" .

"delim" — Provides an alternative delimiter for "list" items. Can be one or

more characters. The default delimiter is a space character. When the

delimiter is a space character, multiple space and tab characters count
as one delimiter. When the delimiter is any other character or string,

REFERENCE MANUAL 97

each instance is a delimiter.

"default" — For "list" items, sets the default choice if the value passed via

"value" , "svalue" or "@" is invalid or out of range.

"min" — For "value" items, a minimum value to allow.

"max" — For "value" items, a maximum value to allow.

The item types "bit" , "value" , "svalue" , "toggle" and "list" can have the

following attributes set to enable or disable the item for editing based on the

bit values of other items in the current value of modes.

"bit_and" — Editable if all the matching bits (or bit) are set in modes .

"bit_or" — Editable if any of the matching bits (or bit) are set in modes .

"bit_not" — Editable if the matching bits (or bit) are not set in modes . Fi-

nally, this key applies to bit-toggle items:

"bit_flip" — Flip the YES/NO sense of this item. Normally, when a bit is set

in modes , the value is presented as "YES" . If "bit_flip" is present, the

logic is reversed. This option can be used to avoid double negatives in
the query/response, particularly when one doesn’t have the freedom to
define what a set bit means. For example, "Draw error bars (YES)?"
is preferable to "Don’t draw error bars (NO)" .

On a normal return with the q or ˆD keys, spec_menu() will return an updated
value for modes that reflects the new values of all the "bit" items. In addition,
new values for "value" , "svalue" and variables passed indirectly using "@"
will be assigned. Finally, for any items that have been modified an element
will be added to the *menu* array with a second index named "updated" and a
value set to one.

The menu is presented as a list with the cursor positioned at the current value
for a modifiable item. The up- and down-arrow keys, the ˆP (previous) and ˆN
(next) control keys and the return key accept the current choice and move up
or down the list.

One exits the menu saving the modifications using the q (quit) key or ˆD . One

can abandon the menu without saving the modifications using the x (exit) key
or ˆC .

The display is refreshed with ˆL , taking into account the current window size.

Bit-value and toggle items are toggled using the space bar or the left- or right-

arrow keys. In addition, the y , Y and 1 keys select YES, while the n , N and 0
keys select NO.

List items are also navigated using the left- and right-arrow keys and the ˆB
(back) and ˆF (forward) to move one position. The ˆA and ˆE keys move to the

first item and last item, respectively. Also, typing the first character of a list

98 REFERENCE MANUAL

item will move the cursor to the first item in the list that begins with that

character. The space bar makes the currently highlighted item the list selec-

tion.

Text entry items (both string- and number-valued) allow insertion and deletion

of text from any point in the string. The left- and right-arrow keys and the ˆB
(back) and ˆF (forward) move one position. The ˆA and ˆE keys move the cur-

sor to the start and end of the entry, respectively. The ˆD key and the keyboard

forward-delete key both delete forward. The backspace and delete key delete

backward. The ˆU and ˆK keys delete from the current position to the begin-

ning and end of line, respectively.

For number-valued items, the text entered will be evaluated. Thus, expres-

sions are allowed. For example, PI/2 , 2+2 or pow(2,12) are all valid entries.

Only commands and functions that make sense in the context of generating an

expression are allowed. Other commands will not be executed and will gener-

ate an error message that will be displayed near the bottom of the menu win-
dow. Among the commands not allowed are those that generate screen output
or control hardware.

To enter a string that starts with one of the navigation command letters,
namely q or x , use one of the text-editing keys, such as left- or right-arrow to
switch to text-entry mode.

When items are disabled by way of the "bit_and" , "bit_or" and "bit_not"
logic, the values appear as --- , and the up/down navigation passes over those
items.

The standard spec macros setplot , setshow , mstartup and plotselect use
the spec_menu() function.

Here is another example:

def menu1 ’{
local i, menu[], modes
local group_size

modes = 1
group_size = 512
menu[++i]["title"] = "Menu Example"
menu[++i]["desc"] = "Enable List Examples"
menu[i]["bit"] = 0x0001

menu[++i]["desc"] = " List Example 1"
menu[i]["bit_and"] = 0x0001
menu[i]["list"] = " Now is the time for all good men"
menu[i]["svalue"] = " time"

REFERENCE MANUAL 99

menu[++i]["desc"] = " List Example 2"
menu[i]["bit_and"] = 0x0001
menu[i]["list"] = " The quick::brown fox::jumps over::the lazy dog"
menu[i]["delim"] = " ::"
menu[i]["value"] = 3

menu[++i]["desc"] = " List Example 3"
menu[i]["bit_and"] = 0x0001
menu[i]["list"] = " 128 256 512 1024 2048 4096 8192"
menu[i]["""] = " group_size"

menu[++i]["desc"] = ""
menu[++i]["desc"] = "Use logarithmic y-axis"
menu[i]["bit"] = PL_YLOG
menu[++i]["desc"] = "Force y-axis minimum to zero"
menu[i]["bit"] = PL_YZERO
menu[i]["bit_not"] = PL_YLOG

modes = spec_menu(menu, modes)

print modes, group_size
’

Variables

global name ... — Declares name to be a global symbol. A global symbol retains its
value after each parsed program is executed. If name is used as an array name,
each element of the array is global. By appending empty square brackets to
name the type of the symbol can be forced to be an associative array, which may
be useful if name is to be used as an argument to a macro function before its
type has been established by usage.

unglobal name ... — Makes the global or constant symbol name no longer global.

constant name [=] expression — Declares name to be a constant, global symbol hav-
ing the value given by expression . A constant symbol cannot be changed by
assignment.

local name ... — Allows reuse of a preexisting name and gives the new instance of

that name scope only within the statement block in which it is defined. The
name may be that of a macro, in which case the macro definition is unavailable
within the statement block. By appending empty square brackets to name the

type of the symbol can be forced to be an associative array, which may be use-

ful if name is to be used as an argument to a macro function before its type has
been established by usage.

100 REFERENCE MANUAL

delete assoc-array [elem] . .. — Removes the element elem of the associative

array assoc-array .

syms [−v] [+|−BGLADNSIC] [pattern ...] — Lists spec’s current variables. Without

arguments, all the variables are listed, along with their memory consumption

and type. With the −v flag, the variables are listed along with their values in a

format that can be saved to a file and read back as commands. If arguments

are given as pattern , only symbols matching the arguments are printed.

Such arguments may contain the ? and * metacharacters.

In addition, the type of symbols listed can be controlled using the flags in the

following table where a − flag prevents symbols with the given attribute from

being listed and a + flag includes symbols with the given attribute in the list.

B Built-In

G Global

L Local
A Associative array
D Data array
N Number type
S String type
I Immutable attribute
C Constant attribute

[[extern] shared] [type] a rray var [cols] — Declares a one-dimensional data
array.

[[extern] shared] [type] a rray var [rows][cols] — Declares a two-dimensional
data array.

Macros

Built-In Commands

def name string — Defines a macro named name to be string . Each time name oc-

curs on input, it is replaced with string . The definition is made immediately,
so the macro can be used later in the same statement block in which it is de-
fined and can be redefined within the same statement block.

Note that the macro definition is made regardless of any surrounding flow con-

trol statements, since the enclosing mini-program is not yet completely parsed
and is not executing.

REFERENCE MANUAL 101

rdef name expression — Defines a macro named name to be expression , which is al-

most always a string constant. Each time name occurs on input, the value ex-
pression is substituted. Unlike def , described above, the macro definition is

not made until all the encompassing statement blocks are parsed and the re-

sulting mini-program is executed. Consider the following example.

if (flag == 1)
rdef plot "onp;offt;lp_plot;ont;plot_res;offp"

else if (flag == 2)
rdef plot "splot;onp;offt;lp_plot;plot_res;ont;offp"

else if (flag == 3)
rdef plot "onp;plot_res;offp"

else
rdef plot ""

Clearly, it is necessary for the mini-program to be parsed and executed to de-

cide which is the appropriate definition to assign to the plot macro.

prdef — Displays all macro definitions. The displayed definitions are prepended
with def name ´ and terminated with ´ so if saved to a file, the defini-
tions can be read back. (See the standard macro savmac on page 162.)

prdef pattern ... — As above, except only macro names matching pattern are
listed, where pattern may contain the metacharacters ? or * , which have the
usual meaning: ? matches any single character and * matches any string.

lsdef — Lists the name and the number of characters in each macro definition.

lsdef pattern ... — As above, except only macro names matching pattern are
listed, where pattern may contain the metacharacters ? or * .

undef name ... — Removes the named macros, which can be ordinary macros,
macro functions or cdef() macros.

cdef(" name", string [, " key " [, flags]]) — Defines parts of chained macros. A
chained macro definition is maintained in pieces that can be selectively in-

cluded to form the complete macro definition. The argument name is the name
of the macro. The argument string contains a piece to add to the macro.

The chained macro can have three parts: a beginning, a middle and an end.

Pieces included in each of the parts of the macros are sorted lexicographically

by the keys when putting together the macro definition. Pieces without a key
are placed in the middle in the order in which they were added, but after any
middle pieces that include a key.

The key argument allows a piece to be selectively replaced or deleted, and also

controls the order in which the piece is placed into the macro definition. The
flags argument controls whether the pieces are added to the beginning or to
the end of the macro, and also whether the pieces should be selectively

102 REFERENCE MANUAL

included in the definition depending on whether key is the mnemonic of a con-

figured motor or counter.

The bit meanings for flags are as follows:

0x01 − only include if key is a motor mnemonic

0x02 − only include if key is a counter mnemonic

0x10 − place in the beginning part of the macro

0x20 − place in the end part of the macro

If flag is the string "delete" , the piece associated with key is deleted from

the named macro, or if name is the null string, from all the chained macros. If

key is the null string, the flags have no effect.

If flags is the string "enable" , the parts of the named macro associated with

key are enabled, and if flags is the string "disable" , the associated parts are

disabled. If name is the null string "" , then all chained macros that have parts

associated with key will have those parts enabled or disabled.

If key is the null string, the flags have no effect.

The cdef() function will remove any existing macro defined using def or
rdef . However, the commands lsdef , prdef and undef will function with
chained macros.

When spec starts and when the reconfig command is run (or the config
macro is invoked), all the chained macros are adjusted for the currently config-
ured motors and counters.

cdef("?") — Lists all the pieces of all the chained macros.

cdef(" name", "", "?") — Lists the pieces of the macro named name.

clone(destination , source) — Duplicates the macro source as a new macro named
destination . A clone of a chained macro becomes an ordinary macro.

strdef(" name" [, arr]) — Returns a string containing the macro definition of name.

If name is not a defined macro, returns the string name itself. If an associative
array arr is included as an argument and if the macro name is a macro func-
tion, elements of arr indexed starting at 0 will be assigned the string names of

the arguments to the macro function. The element arr ["file"] will be as-

signed the name of file where the macro was defined or "tty" if the macro was
defined at the keyboard.

strdef(" name", key [, arr]) — If name is a chained macro, returns a string contain-

ing only the definition segment associated with key . If name is not a defined

macro, returns the string name itself. If name is a macro, but not a chained
macro, returns the definition. If name is a chained macro, but doesn’t contain a

REFERENCE MANUAL 103

segment associated with key , returns the null string. If an associative array

arr is included as an argument and if the macro name is a macro function, ele-

ments of arr indexed starting at 0 will be assigned the string names of the ar-

guments to the macro function. The element arr ["file"] will be assigned the

name of file where the macro was defined or "tty" if the macro was defined at

the keyboard.

Built-In Macro Names

The following macro names are built-in to spec. They are run at the specified times

only if they have been given a definition.

begin_mac — If a macro by this name exists, it will be run after reading the hardware

configuration file and all the start-up command files, but before reading com-

mands from the keyboard.

end_mac — If a macro by this name exists, it will be run when spec exits from either
a ˆD or a quit command.

config_mac — If a macro by this name exists, it will be run after reading the configu-
ration file at start up and after the reconfig command is executed.

prompt_mac — If a macro by this name exists, it will always be run just before spec
issues the main, level-zero prompt. If an error occurs while running
prompt_mac , it will be automatically undefined.

cleanup, cleanup1 — If either or both exists, they will be run whenever an error is
encountered, the exit command is encountered, or a user types ˆC . The
cleanup macro is run first. After running the clean-up macros, spec gives the
standard prompt and waits for the next command from the keyboard.

cleanup_once — A clean-up macro that is always deleted before a new spec main

prompt is issued. If defined, its definition will be pushed on to the input
stream whenever an error is encountered, the exit command is encountered,
or a user types ˆC .

cleanup_always — Like cleanup_once , but its definition is not removed except by an

explicit undef command.

The cleanup and cleanup1 macros are no longer used in the standard macros. The
more recent cleanup_once and cleanup_always macros are preferred.

Macro definitions for these built-in macros should be maintained using cdef() so

that independent macro packages can make use of the macros without interference.

104 REFERENCE MANUAL

Macro Arguments

Within ordinary macros (not macro functions), the symbols $1 , $2 , ... , are replaced

by the arguments with which the macro is invoked. Arguments are defined as

strings of characters separated by spaces. Also,

$0 is replaced with the macro name,

$* is replaced with all the arguments,

$@ is replaced with arguments delimited by \a ,

$# is replaced with the number of arguments,

$$ is a literal $.

A macro argument is a string of characters delimited by spaces. Use quotes to in-

clude spaces within a single argument. Use \" or \’ to pass literal quotes. Argu-

ments can be continued over more than one line by putting a backslash at the end of

the line.

When a macro defined without arguments is invoked, only the macro name is re-
placed with the definition.

When a macro defined with arguments is invoked, all characters on the input line up
to a ; , a { or the end of the line are eaten up, whether or not the macro uses them as
arguments.

When numbered arguments are referred to in the macro definition, but are missing
when the macro is invoked, they are replaced with zeros. If $∗ is used in the defini-
tion and there are no arguments, no characters are substituted.

Argument substitution occurs very early in the input process, before the substituted
text is sent to the parser. It is not possible to use variables or expressions to specify
the argument number.

It is often useful when parsing macro arguments, particularly when the macro is
called with a variable number of arguments, to use the split() function to place the

arguments into an associative array. Typical syntax is:

{
local ac, av[]
ac = split("$*", av)

}

Note, that usage does not respect quoted arguments, since $∗ removes quotation
marks when concatenating the macro arguments.

The sequence $@is replaced with the concatenated arguments delimited by the spe-

cial character \a (the audible bell, ˆG, ASCII 7). The string can then be split as fol-
lows:

REFERENCE MANUAL 105

{
local ac, av[]
ac = split("$@", av, "\a")

}

The elements of av[] will respect the quoted arguments in the macro invocation.

There is no syntax to escape the \a .

There are no limits on the length of macro definitions, the number of macro argu-

ments or on the total combined size of all macro definitions.

Beware of unwanted side affects when referencing the same argument more than

once. For example,

def test ’a = $1; b = 2 * $1’

invoked as test i++ , would be replaced with a = i ++; b = 2 * i++ , with the re-

sult that i is incremented twice, even though that action is not apparent to the user.

The previous definition also would cause problems if invoked as test 2+3 , as that

would be replaced with a = 2+3; b = 2 * 2+3 . The latter expression evaluates to
7, not 10, as might have been intended by the user. Use of parenthesis to surround
arguments used in arithmetic expressions in macro definitions will avoid such prob-
lems, as in b = 2 * ($1) .

Macro Functions

Macro functions are a type of macro that can return values and can be used as an op-
erand in expressions. The macro definition can include function arguments, which
then become available to the body of the macro function. For example,

def factorial(n) ’{
if (n <= 1)

return(1);
return(n * factorial(n-1))

}’

The syntax of macro functions requires the macro name followed by a set of parenthe-
sis which can contain a comma-separated list of argument names. The arguments
names become local variables within the macro definition. The definition must be a

statement block, that is, the statements must be enclosed in curly brackets.

106 REFERENCE MANUAL

String and Number Functions

Math Functions

exp(x) , exp10(x) — Returns e x and 10 x respectively.

log(x) , log10(x) — Returns the natural logarithm and the base 10 logarithm of x

respectively.

sqrt(x) — Returns the square root of x.

pow(x , y) — Returns x y.

fabs(x) — Returns the absolute value of x.

int(x) — Returns the integer part of x. The integer part is formed by truncation to-

wards zero.

rand() — Returns a random integer between 0 and 32767.

rand(x) — If x is positive, returns a random integer between 0 and x , inclusive. If x
is negative, returns a random integer between −x and x , inclusive. Values of x
greater than 32767 or less than −16383 are set to those limits. If x is zero,
zero is returned. The C-library rand() function is used to obtain the values.
The seed is set to the time of day on the first call. The randomness (or lack
thereof) of the numbers obtained is due to the C library implementation.

srand(seed) — Sets the seed value for the random number generator used by the
rand() function to the integer value seed . This function allows the same se-
quence of random numbers to be generated reproducibly by resetting the seed
to the same value.

sin(x) , cos(x) , tan(x) — Returns the sine, cosine and tangent, respectively, of the
argument x, which must be in radians.

asin(x) , acos(x) , atan(x) — Returns the arc sine, arc cosine and arc tangent, re-
spectively, of the argument x. The return value is in radians. asin() and
atan() return values in the range −π /2 to π /2, while acos() returns values

from 0 to π.

atan2(y , x) — Returns the arc tangent of y/x using the signs of the arguments to
determine the quadrant of the return value. The return value is in the range
−π to π. Having both y and x zero is an error.

String Functions

index(s1 , s2) — Returns an integer indicating the position of the first occurrence of

string s2 in string s1 , counted from 1, or zero if s1 does not contain s2 .

REFERENCE MANUAL 107

split(string , arr) — Splits the string string at space characters and assigns the

resulting substrings to successive elements of the associative array arr , start-

ing with element 0. The space characters are eliminated. The functions re-

turns the number of elements assigned.

split(string , arr , delimiter) — As above, but splits the string into elements that

are delimited by the string delimiter . The delimiting characters are elimi-

nated.

substr(string , m) — Returns the portion of string string that begins at position m,

counted from 1.

substr(string , m, n) — As above, but the returned string is no longer than n .

length(string) — Returns the length of the string string .

sprintf(format [, a, b, . ..]) — Returns a string containing the formatted print.

See sprintf() in a C-language reference manual.

sscanf(string , format , a [, b, . ..]) — Scans the literal string or string variable
string for data, where format contains a format specification in the same
style as the C language scanf() function. Each subsequent argument is a vari-
able name or array element that will be assigned the values scanned for. The
function returns the number of items found in the string.

Regular Expression Functions

Regular expressions are sequences of special characters for searching for patterns in
strings. spec implements extended regular expression using the C library regcomp()

and regexec() functions, which have a somewhat platform-dependent implementation.
See the regular expression man page (man 7 regex on Linux and man re_format on
OS X) for details of regular expression syntax. The names and usage of the following
spec functions resemble those used in the UNIX awk (or gawk) utility. (These func-

tions added in spec release 6.03.04.)

rsplit(str , arr , regex) — Similar to split() above, but the optional delimiter ar-
gument can be a regular expression. The string str is split into elements that

are delimited by the regular expression regex and the resulting substrings are

assigned to successive elements of the array arr , starting with element 0. The
delimiting characters are eliminated. Returns the number of elements as-
signed.

sub(regex , sub , str) — Replaces the first instance of the regular expression regex
in the source string str with the substitute string sub . An & in the substitute
string is replaced with the text that was matched by the regular expression. A
\& (which must be typed as "\\&") will produce a literal & . Returns the

108 REFERENCE MANUAL

modified string.

gsub(regex , sub, str) — Replaces all instances of the regular expression regex in

the source string str with the substitute string sub . An & in the substitute

string is replaced with the text that was matched by the regular expression. A

\& (which must be typed as "\\&") will produce a literal & . Returns the modi-

fied string.

gensub(regex , sub , which , str) — Replaces instances of the regular expression

regex in the source string str with the substitute string sub based on the

value of which . If which is a string beginning with G or g (for global), all in-

stances that match are replaced. Otherwise, which is a positive integer that

indicates which match to replace. For example, a 2 means replace the second

match.

In addition, the substitute text may contain the sequences \ N (which must be

typed as "\\ N"), where N is a digit from 0 to 9. That sequence will be replaced
with the text that matches the Nth parenthesized subexpression in regex . A
\0 is replaced with the text that matches the entire regular expression. Re-
turns the modified string.

match(str , regex [, arr]) — Returns the position in the source string str that
matches the regular expression regex . The first position is 1. Returns 0 if
there is no match or −1 if the regular expression is invalid. If the associative
array arr is provided, its contents are cleared and new elements are assigned
based on the consecutive matching parenthesized subexpressions in regex .
The zeroth element, arr [0] , is assigned the entire matching text, while
arr [0]["start"] is assigned the starting position of the match and
arr [0]["length"] is assigned the length of the match. Elements from 1 on-
ward are assigned matches, positions and lengths of the corresponding match-
ing parenthesized subexpressions in regex .

Conversion Functions

asc(s) — Returns the ASCII value of the first character of the string value of the ar-

gument.

bcd(x) — Returns a 24-bit integer that is the binary-coded decimal representation of
the nonnegative integer x.

dcb(x) — Returns the nonnegative integer corresponding to the 24-bit binary-coded

decimal representation x.

REFERENCE MANUAL 109

deg(x) — Returns the argument converted from radians to degrees.

rad(x) — Returns the argument converted from degrees to radians.

Data Handling and Plotting Functions

array_op(cmd, arr [, args ...]) — Performs operations on the array based on the

following values for cmd:

"fill" — Fills the array arr with values. For a two-dimensional array,

array_op("fill", arr, u, v)

produces for each element

arr[i][j] = u × i + v × j

With subarrays, i and j refer to the subarray index. Also, i and j al-

wa ys increase, even for reversed subarrays, so

array_op("fill", arr[-1:0][-1:0], 1, 1)

fills arr in reverse order.

"contract" — For args u and v , returns a new array with dimensions con-
tracted by a factor of u in rows and v in columns. Elements of the new
array are formed by averaging every u elements of each row with every
v elements of each column. If there are leftover rows or columns, they
are averaged also.

"min" or "gmin" — Returns the minimum value contained in the array.

"max" or "gmax" — Returns the maximum value contained in the array.

"i_at_min" or "i_at_gmin" — Returns the index number of the minimum
value of the array. For a two-dimensional array dimensioned as
D[N][M] , the index number of element D[i][j] is (i × M) + j . If arr
is a subarray, the index is with respect to the full array, although the

minimum is the minimum value in the specified subarray.

"i_at_max" or "i_at_gmax" — Returns the index number of the maximum

value of the array. See "i_at_min" for subarray considerations.

"row_at_min" or "rmin" — Returns the row number containing the minimum

value of the array. If arr is a subarray, the row is with respect to the

full array, although the minimum is the minimum value in the specified
subarray.

"row_at_max" or "rmax" — Returns the row number containing the maximum
value of the array. If arr is a subarray, the row is with respect to the
full array, although the maximum is the maximum value in the specified

subarray.

110 REFERENCE MANUAL

"col_at_min" or "cmin" — Returns the column number containing the mini-

mum value of the array. If arr is a subarray, the column is with respect

to the full array, although the minimum is the minimum value in the

specified subarray.

"col_at_max" or "cmax" — Returns the column number containing the maxi-

mum value of the array. If arr is a subarray, the column is with respect

to the full array, although the maximum is the maximum value in the

specified subarray.

"i_<=_value" — Returns the index number of the nearest element of the array

with a value at or less than u . For a two-dimensional array dimen-

sioned as D[N][M] , the index number of element D[i][j] is

(i × M) + j . Unlike "i_at_min" , "i_at_max" , etc., if arr is a subar-

ray, the index is with respect to the subarray.

"i_>=_value" — Returns the index number of the nearest element of the array

with a value at or greater than u , starting from the last element. For a

two-dimensional array dimensioned as D[N][M] , the index number of el-
ement D[i][j] is (i × M) + j . Unlike "i_at_min" , "i_at_max" , etc.,
if arr is a subarray, the index is with respect to the subarray.

"fwhm" — Requires two array arguments, each representing a single row or
single column. Returns the full-width in the first array at half the maxi-
mum value of the second array.

"cfwhm" — Requires two array arguments, each representing a single row or
single column. Returns the center of the full-width in the first array at
half the maximum value of the second array.

"uhmx" — Requires two array arguments, each representing a single row or
single column. Returns the value in the first array corresponding to half
the maximum value in the second array and at a higher index.

"lhmx" — Requires two array arguments, each representing a single row or
single column. Returns the value in the first array corresponding to half
the maximum value in the second array and at a lower index.

"com" — Requires two array arguments, each representing a single row or sin-
gle column. Returns the center of mass in the first array with respect to

the second array. The value is the sum of the products of each element

of the first array and the corresponding element of the second array, di-
vided by the number of points.

"x_at_min" — Requires two array arguments, each representing a single row
or single column. Returns the element in the first array that corre-
sponds to the minimum value in the second array.

"x_at_max" — Requires two array arguments, each representing a single row
or single column. Returns the element in the first array that corre-

sponds to the maximum value in the second array.

REFERENCE MANUAL 111

"sum" or "gsum" — Returns the sum of the elements of the array. If there is a

third argument greater than zero, the array is considered as a sequence

of frames, with the third argument the number of rows in each frame.

The return value is a new array with that number of rows and the same

number of columns as the original array. Each element of the returned

array is the sum of the corresponding elements of each frame. For ex-

ample, if the original array is dimensioned as data[N][M] , the return

value for

arr = array_op("sum", data, R)

is a new array of dimension arr[N/R][M] , where each element

arr[i][j] is the sum of k from 0 to R - 1 of data[i + k × N / R][j] .

"sumsq" — Returns the sum of the squares of the elements of the array. If

there is a third argument and it is greater than zero, the interpretation

is the same as above for "sum" , except the elements in the returned

array are sums of squares of the elements in the original array.

"transpose" — Returns a new array of the same type with the rows and col-
umns switched.

"updated?" — Returns nonzero if the data in the array has been accessed for
writing since the last check, otherwise returns zero.

"rows" — Returns the number of rows in the array.

"cols" — Returns the number of columns in the array.

"row_wise" — With a nonzero third argument, forces the array_dump() ,
array_fit() , array_pipe() , array_plot() and array_read() func-
tions to treat the array as row-wise, meaning each row corresponds to a
data point. With only two arguments, returns nonzero if the array is al-
ready set to row-wise mode.

"col_wise" — As above, but sets or indicates the column-wise sense of the
array.

"sort" — Returns an ascending sort of the array.

"swap" — Swaps the bytes of the named array. The command can change big-

endian short- or long-integer data to little-endian and vice versa. For
most built-in data collection, spec automatically swaps bytes as appro-
priate, but this function is available for other cases that may come up.

"frame_size" — The number of rows in a frame. The frame size is part of the
shared array header and may be useful to auxiliary programs, although

the value is maintained for non-shared arrays. Note, setting the frame

size to zero will clear the "frames" tag. Setting the frame size to a non-
zero value will set the "frames" tag.

"latest_frame" — The most recently updated frame. The latest frame is part

of the shared array header and may be useful to auxiliary programs,

112 REFERENCE MANUAL

although the value is maintained for non-shared arrays.

"tag" — Shared arrays can be tagged with a type that will be available to

other processes accessing the array. Usage is

array_op("tag", arr , arg) where arr is the array and arg is "mca" ,

"image" , "frames" , "scan" or "info" .

"untag" — Removes tag information.

"info" — Returns or sets the info field of a shared array segment. The field

can be contain up to 512 bytes of arbitrary text. When setting the field,

if the string argument is longer than 512 bytes, the first 512 bytes will

be copied. The function returns the number of bytes copied, −1 if arr is

not a shared array or 0 if arr is a shared array that doesn’t support the

info field. The info field is included in SHM_VERSIONversion 6 headers,

added in spec release 6.00.08.

"meta" — Returns or sets the meta area of a shared array segment. With

spec, the field can contain up to 8,192 bytes of arbitrary text. When set-

ting the field, if the string argument is longer than 8,192 bytes, the first
8,192 bytes will be copied. The function returns the number of bytes
copied, −1 if arr is not a shared array or 0 if arr is a shared array that
doesn’t support the meta field. The meta field is included in SHM_VER-
SION version 6 headers, added in spec release 6.00.08.

array_dump([file ,] arr [, arr2 ...][, options ...]) — Efficiently writes the
data in the array arr and optionally arrays arr2 , ..., etc. If the initial optional
file argument is given, the output is to the named file or device. Otherwise,
output is to all "on" output devices, most notably the screen. The additional
optional options arguments are strings that control the formatting.

A format argument can specify a printf()-style format for the values. The de-
fault format is "%.9g" , which prints nine digits of precision using fixed point
or exponential format, whichever is more appropriate to the value’s magnitude.
Recognized format characters are e or E (exponential), f (fixed point), g or G
(fixed or exponential based on magnitude), d (decimal integer), u (unsigned in-

teger), o (octal integer), x or X (hexadecimal integer). All formats accept stan-
dard options such as precision and field width. For example, "%15.8f" uses
fixed-point format with eight digits after the decimal point and a fifteen-char-

acter-wide field. For the integer formats, double values will be converted to in-

tegers. Also, initial characters can be included in the format string, for exam-
ple, "0x%08x" is valid.

The option "%D=c" , specifies an alternate delimiter character c to replace the

default space character delimiter that is placed between each element in a row

of output. For example, one might use a comma, a colon or the tab character
with "%D=," , "%D=:" or "%D=\t" , respectively. Use "%D=" for no delimiter.

REFERENCE MANUAL 113

Also, by default, the output is one data row per line. Thus, for one-dimensional

row-wise arrays, all elements will be printed on one line, while one-dimen-

sional column-wise array will have just one data element per line. For two-di-

mensional arrays, each line will contain one row of data. The number of ele-

ments per line can be controlled with the options "%#[C|W]" . For one-dimen-

sional arrays, the number # is the number of elements to print per line. For

two-dimensional arrays, # is the number of rows to print per line. If an op-

tional W is added, the number becomes the number of elements to print per

line, which can split two-dimensional arrays at different points in the rows. If

an optional C is added to the option string, a backslash will be added to each

line where a row is split. (The C-PLOT scans.4 user function can properly inter-

pret such "continued" lines for one-dimensional MCA-type array data.)

Finally, the various options can be combined in a single string. For example,

array_dump(data, "%15.4f", "%D=:", "%8W")

and

array_dump(data, "%15.4f%D=:%8W")

work the same.

array_copy(dst , src [, ...]) — Fills consecutive bytes in the destination array (or
subarray) dst with bytes from the source arrays or strings in the subsequent
arguments. The arrays can be of different types, which allows creating a bi-
nary data stream of mixed types. If a source argument is not a data array, the
string value of the argument is copied.

As an example of how array_copy() might be useful, consider a device that
sends and receives a binary stream consisting of four floats followed by two in-
tegers then seven more floats. Here is how to prepare a byte array containing
the mixed binary data types:

float array float_d[11]
ulong array long_d[2]
ubyte array ubyte_d[52]

. .. assign values to float_d and long_d, then ...

array_copy(ubyte_d, float_d[0:3], long_d, float_d[4:])
sock_put("host", ubyte_d)

Note, the source array is not erased prior to the copy. The above assignment

could also be carried out as follows::

array_copy(ubyte_d[0:15,24:], float_d)
array_copy(ubyte_d[16:], long_d)

Four floats consume sixteen bytes. Two integers consume eight bytes. The

114 REFERENCE MANUAL

subarray notation selects the first sixteen bytes of ubyte_d for the first four

floats, then skips eight bytes for where the integers will go, then copies the re-

mainder of the floats. Since only as much data will be copied as is contained in

the source array and since the source arrays are fixed size, it is not necessary

to specify the final byte position in the destinations.

If the returned data uses the same format, floats and integers can be extracted

using similar syntax:

sock_get("host", ubyte_d)
array_copy(float_d, ubyte_d[0:15], ubyte_d[24:])
array_copy(long_d, ubyte_d[16:23])

The function will only copy as many bytes as fit into the preallocated space of

the destination array.

If the source arguments are not data arrays, spec will take the string value of

the argument and copy the ASCII value of each byte to corresponding bytes in

the destination. The terminating null byte is not copied. If the argument is a
number, the string value of the number is what one would see on the display
with the print command.

The function returns the updated array dst . If dst is a subarray, the full
array is returned. A −1 is returned if dst is not a data array.

Note, this function allows arbitrary bytes to be copied to the elements of float
and double arrays, which can result in undefined or not a number (NaN) val-
ues for those elements.

The array_copy() function appeared in spec release 6.00.07.

array_read(file , arr [, options]) — Reads data from the ASCII text file file , and
stuffs the data into the array arr . For a row-wise array, the values on each
line of the file are assigned into successive columns for each row of the array.
If there are more items on a line in the file than columns in the array, or if

there are more points in the file than rows in the array, the extra values are ig-
nored. For a column-wise array, each row of the data file is assigned to succes-
sive columns of the array.

If arr is a string array, successive bytes from each line of the file are assigned

to elements of the array (as of spec release 6.04.05).

Lines beginning with the # character are ignored, except for the case where
arr is a string array. There is no limit on the length of the input line. Prior to

spec release 6.03.05, the maximum length was 2,048 characters.

The only currently recognized option is a "C=#" , where # is the starting col-
umn number in the file to use when making assignments (as of spec release

REFERENCE MANUAL 115

6.03.05).

Returns −1 if the file can’t be opened, otherwise returns the number of points

(bytes in the case of a string array) read and assigned.

array_pipe(program [, args [, arr_out [, arr_in]]])) —

array_plot(arr [, arr2 ...])) — Plots the data in the array arr (and optional addi-

tional array arguments). Depending on whether arr is a row-wise or column-

wise array, the first column or first row elements are used for x. Subsequent

elements (up to a maximum of 64) are plotted along the y axis. If preceded by

a call of plot_cntl("addpoint") and the ranges have not changed, only the

last point in the array is drawn. If preceded by a call of plot_cntl("ad-
dline") the current plot will not be erased, and the plot ranges will not be

changed. The plotting area is not automatically erased by a call of

array_plot() − use plot_cntl("erase") for that. The axis ranges are set us-

ing the plot_range() function. See plot_cntl() for other options that affect
drawing the plot.

array_fit(pars , arr [, arr2 ...]) — Performs a linear fit of the data in the array
arr . The fitted parameters are returned in the associative array pars . The
function returns the chi-squared value of the fit, if the fit was successful. A −1
is returned if the covariance matrix is singular. The fit algorithm is along the
same lines as the lfit() routine in Numerical Recipes (W.H. Press, et al., Cam-
bridge University Press, 1986, page 512).

plot_cntl(cmd) — Selects built-in plotting features. The argument cmd is a string of
comma- or space-delimited options. The following options may be preceded by
a minus sign to turn the associated feature off, nothing (or an optional plus
sign) to turn the feature on or a question mark to return a value of one or a
zero that indicates whether the associated feature is currently on or off:

"xlog" — Use a logarithmic x axis.

"ylog" — Use a logarithmic y axis.

"xexact" — Force x-axis minimum and maximum to be set to the scan end-
points (as opposed to being rounded).

"colors" — Enable the use of colors.

"dots" — Draw graphics-mode points with large dots.

"lines" — Connect graphics-mode points with lines.

"ebars" — Draw vertical lines through each point of length equal to the twice
the square root of the y value.

"persist" — Keep graphics mode on after ordinary user input.

"perpetual" — Keep graphics mode on continuously (appropriate if using X

windows, for example).

116 REFERENCE MANUAL

Other plot_cntl() options are:

"colors= bgnd : win : text : axis : symb:..." — Assigns colors for drawing the vari-

ous graphics-mode elements. The values for bgnd (the background color

of the area outside the axis), win (the background color of the area in-

side the axis), text (the color of the text), axis (the color of the axis) and

symb ... (the color of the plotting symbols) are integers.

The first 10 colors are standardized according to the following table:

0 background (normally white or black)

1 foreground (normally black or white)

2 blue 3 red

4 green 5 yellow

6 cyan 7 magenta

8 white 9 black

Other colors may be available depending on the particular device. You
don’t have to assign values to all colors.

"colors[numb]" — Returns the current color assignments, where numb is a
number between zero and 67. Numbers zero through three return the
colors assigned to the bgnd , win , text and axis elements respectively.
Numbers from 4 through 67 return the colors assigned to the symbols
for data elements zero through 63.

"filter numb" — Selects filter number numb, where numb can be any of the nu-
merals from 1 through 5. All plotting commands are directed to this fil-
ter. The default filter is filter 1. Each filter is associated with a sepa-
rate process. On an X windows display, each filter is associated with a
separate window.

"title= string " — On an X windows display, the title given by string is used in
the XSetWMName() and XSetWMIconName() calls to set the window

and icon labels. With most X11 window managers, that means the title
will appear in the window’s title bar.

"geometry= width xheight +xoff +yoff " — With the x11 high-resolution plot win-

dows, sets the size and position of the window. As with the conventional
X11 syntax for specifying window geometry, not all parts of the geome-
try string are required.

"open" — Turn on graphics mode. If there is no graphics filter program cur-
rently active for the current filter number (see above), the filter program

associated with the current GTERMvariable is started. Recognized GTERM
values are vga , ega , cga , herc , x11 , and sun .

REFERENCE MANUAL 117

"close" — Turn off graphics mode, unless the perpetual or persistent mode

has been selected.

"kill" — Turn off graphics mode and terminate graphics process.

"erase" — Clear the graphics-mode screen (or the text screen if graphics mode

is off).

"addpoint" — Before a call to data_plot() will cause the plot to be made with

minimal redrawing. Used for updated plotting during scans.

"addline" — Before a call to data_plot() will prevent the current data from

being erased and the new data from changing the ranges when the new

data points are drawn. Used for plotting several data sets from differ-

ent data groups on top of each other.

"mca" — Before a call to data_plot() will cause the data points to be dis-

played using a minimal redrawing algorithm, appropriate for displaying

data actively being accumulated by an MCA-type device. The "dots"
and "ebars" modes must be turned off for the algorithm to work effec-
tively.

"lp" — Before a call to data_plot() will generate printing instructions appro-
priate for plotting on a 132-column printer.

plot_move(x , y [, string [, color]]) — Moves the current position to column x
and row y , where column 0, row 0 is the upper left corner of the screen. If the
third argument string is present, it is written as a label at the given position.
If using color high-resolution graphics, the fourth argument, if present, is the
color to use to draw the label. The background color for the entire label will be
the background color at the starting position. If graphics mode is not on,
plot_move() works just as tty_move() . Returns true.

plot_range(xmin , xmax, ymin , ymax) — Sets the ranges of the internally generated
plots. If any of the arguments is the string "auto" , the corresponding range
limit is determined automatically from the data at the time the plot is drawn.

If any of the arguments is the string "extend" , the corresponding range limit
is only changed if the current data decrease the minimum or increase the max-
imum. Returns true.

splot_cntl(cmd) —

spec can store data in up to 256 independent data arrays called groups. Each group
is configured (see below) to have a particular number of data elements per point. For
example, each point in a group could have elements for H, K , L , and detector counts.

Alternatively, each point could have just one element and be used to hold data ob-

tained from an MCA.

Groups are configured using the data_grp() function. A group can have up to 2048
elements per point. The maximum number of points in a group is determined by the

118 REFERENCE MANUAL

product of the number of elements per point and the number of points. That product

can be no more than 65,536, and may be slightly less depending on how the number

of elements divides into 2048. The maximum number of points for all groups is

262,144. (These limits are arbitrary and are set to control the size of static data ar-

rays and auxiliary files. If requested, CSS can make the limits larger.)

When starting spec for the first time or with the −f (fresh) flag, one data group

(group 0) is configured for 4096 points, with each point consisting of two elements.

When leaving spec, the current data group configuration and data points are saved.

spec has several functions to manipulate the internal data. These functions allow

unary and binary arithmetic operations, math functions and analysis operations to

be performed on all the elements of a group or among elements in different groups.

In the functions described below, if an element number is negative, the element num-

ber is obtained by adding the number of elements per point in the group to the nega-

tive element number. For example, element −1 is the last element, element −2 is the
second to last, etc.

All functions reset to command level if an invalid group, point or element is given as
an argument. Functions that don’t need to return anything in particular return zero.

data_grp(grp , npts , wid) — Configures data group grp . The group will have npts
points, each having wid elements. If npts and wid match the previous values
for the group, the data in the group is unchanged. Otherwise, the data values
of the reconfigured group are set to zero. If wid is zero, the group is elimi-
nated. If npts is zero, as many points as possible are configured. If npts is
negative, as many points as possible, but not more than −npts are configured.
If grp is −1, the current group configuration is displayed.

data_info(grp , what) — Returns data group configuration information for group
grp , according to the the string what . Values for what are:

"npts" — the number of configured points.

"elem" — the number of configured elements.

"last" — the number of the last point added to the group.

"precision" — the number of bytes per element, either 4 or 8.

If the group number is invalid, or if the string what is none of the above, re-
turns −1.

data_get(grp , npt , elem) — Returns the value of element elem of point npt in group

grp .

data_put(grp , npt , elem , val) — Assigns the value val to element elem of point
npt in group grp .

REFERENCE MANUAL 119

data_nput(grp , npt , val0 [, val1 ...]) — Assigns values to point npt of group

grp . Element 0 is assigned val0 , element 1 is assigned val1 , etc. Not all ele-

ments need be given, although elements are assigned successively, starting at

element 0.

data_uop(g_src , e_src , g_dst , e_dst , uop [, val]) — Performs the unary opera-

tion specified by the string uop on element e_src for all points in group g_src .

The results are put in element e_dst of the corresponding points in group

g_dst . The source and destination groups and/or elements may be the same.

If the number of points in the groups differ, the operation is carried out on up

to the smallest number of points among the groups. Values for uop are:

"clr" — clear to zero.

"fill" — each element is set to point number, starting at 0.

"neg" — Negative of source.

"abs" — Absolute value of source.

"inv" — Inverse of source.

"sin" — Sine of source.

"cos" — Cosine of source.

"tan" — Tangent of source.

"asin" — Arcsine of source.

"acos" — Arccosine of source.

"atan" — Arctangent of source.

"log" — Natural logarithm of source.

"exp" — Exponential of source.

"log10" — Log base 10 of source.

"pow" — The val power of source.

"copy" — Value of source.

"rev" — Reversed copy of source.

"sqrt" — Square root of source.

"set" — All elements set to the value of val .

"contract" — Every val points are averaged to make a new point.

"add" — Source plus val .

"sub" — Source minus val .

"mul" — Source times val .

"div" — Source divided by val .

If any of the operations would result in an exception (divide by zero, log or

square root of a negative number, etc), the operation is not performed and a
count of the operations skipped is printed as an error message.

data_bop(g0_src , e0_src , g1_src , e1_src , g_dst , e_dst , bop) — Performs the bi-

nary operation specified by the string bop on elements e0_src and e1_src for

120 REFERENCE MANUAL

all points in the groups g0_src and g1_src . The results are put in element

e_dst for the corresponding points of group g_dst . The source and destina-

tion groups and/or elements may be the same. If the number of points in the

groups differ, the operation is carried out on up to the smallest number of

points among the groups. Values for bop are:

"add" — The sum of the source elements.

"sub" — Source 0 minus source 1.

"mul" — The product of the source elements.

"div" — Source 0 divided by source 1.

If the divide would result in an exception, the operation is not performed and a

count of the operations skipped is printed as an error message.

data_anal(grp , start , npts , el_0 , el_1 , op [, val]) — Performs the operations

indicated by op on npts points in group grp , starting at point start . The op-

erations use the values in element el_0 (if applicable) and el_1 . If npts is

zero, the operations are performed on points from start to the last point added
using data_nput() or data_put() . The values for op are:

"min" — Returns the minimum value of el_1 . (el_0 is unused.)

"max" — Returns the maximum value of el_1 . (el_0 is unused.)

"i_at_min" — Returns the point number of the data point with the minimum
value of el_1 . (el_0 is unused.)

"i_at_max" — Returns the point number of the data point with the maximum
value of el_1 . (el_0 is unused.)

"i_<=_value" — Returns the point number of the nearest data point in el_1 at
or below val , starting from the first point. (el_0 is unused.)

"i_>=_value" — Returns the point number of the nearest data point in el_1 at
or above val , starting at the last point. (el_0 is unused.)

"uhmx" — Returns the value in el_0 corresponding to half the maximum value

in el_1 and at a higher index.

"lhmx" — Returns the value in el_0 corresponding to half the maximum value

in el_1 and at a lower index.

"sum" — Returns the sum of the values in el_1 . (el_0 is unused.)

"fwhm" — Returns the full-width in el_0 at half the maximum value of el_1 .

"cfwhm" — Returns the center of the full-width in el_0 at half the maximum
value of el_1 .

"com" — Returns the center of mass in el_0 with respect to el_1 . The value is
the sum of the products of each el_0 and el_1 divided by the number of
points.

"x_at_min" — Returns the value of el_0 at the minimum in el_1 .

REFERENCE MANUAL 121

"x_at_max" — Returns the value of el_0 at the maximum in el_1 .

"sumsq" — Returns the sum of the squares in el_1 . (el_0 is unused.)

The following operations treat a data group as a two dimensional data array

with rows indexed by the point number and the columns indexed by the ele-

ment number. The operations work on the portion of the group determined by

the starting row start the number of rows npts , the starting column el_0 and

the end row el_1 . As usual, if npts is zero, all points (rows) from start to the

last are considered. A negative element (column) number is added to the

group width to obtain the element (column) to use.

"gmin" — Returns the minimum value.

"gmax" — Returns the maximum value.

"gsum" — Returns the sum of all values.

"i_at_gmin" — Returns the index number of the minimum value. The index

number is the row number times the group width plus the element num-

ber.

"i_at_gmax" — Returns the index number, as defined above, of the maximum
value.

data_read(file_name , grp , start , npts) — Reads data from the ASCII file
file_name , and stuffs the data into group grp starting at point start , reading
up to npts points. If npts is zero, all the points in the file are read. The values
on each line of the file are assigned into successive elements for each point in
the group. If there are more elements on a line in the file than fit in the group,
or if there are more points in the file than in the group, the extra values are ig-
nored. Lines beginning with the # character are ignored. Returns −1 if the file
can’t be opened, otherwise returns the number of points read.

data_fit(pars , grp , start , npts , el_data , el_data [, ...]) — Performs a linear
fit of the data in element el_data to the terms in the elements specified by

el_pars . The fitted parameters are returned in the array pars supplied by
the user. The function returns the chi-squared value of the fit, if the fit was
successful. A −1 is returned if there are insufficient arguments or the covari-

ance matrix is singular. The fit algorithm is along the same lines as the lfit()

routine in Numerical Recipes (W. H. Press, et al., Cambridge University Press,
1986, page 512).

data_plot(grp , start , npts , el_0 , el_1 [, el_2 ...]) — Plots the current data

in group grp starting at point start and plotting npts points. Element el_0 is

used for x. Elements given by the subsequent arguments (up to a maximum of
64) are plotted along the y axis. The element arguments can be combined in a
single space- or comma-delimited string, which can make creation of macros to

plot a variable numbers of curves in the same plot window easier.

122 REFERENCE MANUAL

If npts is zero, only the points from start to the last point added using

data_nput() or data_put() are plotted.

If preceded by a call of plot_cntl("addpoint") and the ranges have not

changed, only point start + npts − 1 is drawn. If preceded by a call of

plot_cntl("addline") the current plot will not be erased, and the plot ranges

will not be changed.

The plotting area is not automatically erased by a call of data_plot() −use

plot_cntl("erase") for that. The axis ranges are set using the

plot_range() function. See plot_cntl() for other options that affect drawing

the plot.

data_dump(grp , start , npts , el_0 , [, el_1 ...] [, fmt1] [, fmt2]) — Effi-

ciently writes elements from group grp to turned on output devices. The start-

ing point is start and the number of points is npts . The elements specified by

el_0 , e1_1 , etc., are printed. If el_0 is the string "all" , all the elements for
each point are printed. If npts is zero, only the points from start to the last
point added using data_nput() or data_put() are printed. The element argu-
ments can be combined in a single space- or comma-delimited string.

The optional argument fmt1 is a string, having the format "%#" , that specifies
how many data points (specified by the number #) are to be printed on each
line. If the number # is followed by the letter C, a backslash is added to each
continued line, appropriate for saving MCA data in manageable length lines.
New versions (since May 1, 1995) of the C-PLOT scans.4 user function interpret
the continued lines correctly for MCA data. The optional argument fmt2 is a
string that specifies an alternate printf()-style format for the values. Only e , g
and f formats are recognized. For example, "%15.8f" uses fixed-point format
with eight digits after the decimal point and a fifteen-character-wide field. The
default output format is "%g" . See printf() in a C manual for more informa-
tion. Note that in the default installation, the internal data arrays use single-
precision floating values, which contain only about 8 decimal digits of signifi-

cance.

Binary Input/Output

The facility for binary file input and output allows users and sites to create arbitrary
binary file formats for writing and reading spec data arrays. C source code for a

number of formats is included in the spec distribution.

fmt_read(file , fmt , arr [, header [, flags]]) —

REFERENCE MANUAL 123

fmt_write(file , fmt , arr [, header [, flags]]) —

fmt_close(file , fmt) —

In these functions file is the name of the data file, fmt selects which format to use

and arr is the data array. The optional header argument is an associative array that

may containing identifying information to be saved with the binary values in the

data array. The optional flags argument is reserved for future enhancements.

data_pipe("?") — Lists the currently running data-pipe processes with name and

process id.

data_pipe(program , " kill") — Kills the process associated with program .

The Data-Pipe Facility

spec’s data_pipe() function allows integration of external code with spec. With the

data-pipe facility, spec sends information to the external program, allows the exter-
nal program to execute for a time, and then receives information back from the exter-
nal program. The information can be in the form of a string or a number, and can
also include the contents of a spec data group or data array. The handshaking and
data transfer between spec and the data-pipe program is done in an overhead mod-
ule included in the spec distribution that is linked with the external code.

From spec, access to the data-pipe facility is through the data_pipe() function
called from the user level. Usage is as follows.

data_pipe(program [, args [, grp_out | arr_out [, grp_in | arr_in]]]) — Initiates
or resumes synchronous execution of the special process named program . If
program contains a / character, then it contains the complete absolute or rela-
tive path name of the program to run. Otherwise the program must be in the
SPECD/data_pipe directory, where SPECDis the built-in spec variable contain-

ing the path name of spec’s auxiliary file directory. You can use the string "."
for program as an abbreviation for the same program name as used in the last
call to data_pipe() .

The string value of args is made available to the user code in the program as

described in the next section.

The optional arguments grp_out and grp_in are data group numbers. If
grp_out is present, the contents of that group are sent to the data-pipe pro-

gram. If grp_in is present, it is the number of the data group that will receive

values from the data-pipe program. The data-pipe program configures the size
of grp_in for an implicit call to data_grp() within data_pipe() . If the
grp_in argument is absent, spec will not receive data-group data from the

data-pipe program. If grp_out is also absent, group data won’t be sent to the

124 REFERENCE MANUAL

data-pipe program. Even without group arguments, the data-pipe program

can still return values to spec in the form of assigning a number or string re-

turn value to data_pipe() .

Either or both of the data group arguments can be replaced with the array ar-

guments arr_out and arr_in . The arrays referred to by these arguments

must be the data arrays declared explicitly with the array keyword. When

sending array data to the data-pipe program, the array data is first converted

to double precision floating point format. The received data is always double,

but is converted to fit the declared data type of arr_in . Only as much data as

will fit into the array will be assigned. The number of columns in arr_in
should match the width of the data sent over by the data-pipe program. If not,

the data will still be assigned to the array, but will be misaligned.

Prior to spec release 4.03.13, only one data_pipe() function could be active at

a time.

The user C code can be complied and linked using the command

dpmake program [UOBJ=...] [LIBS=...] [optional_make_args]

The command dpmake is a short shell script which invokes the make utility us-
ing the makefile data_pipe.mak in the SPECD/data_pipe directory. The file
program .c will be compiled and linked with the data-pipe overhead module,
and the result placed in an executable file named program . If additional object
modules or libraries need to be linked, they can be specified with the UOBJ=or
LIBS= parameters. If the tools provided are not sufficient, you can create cus-
tom makefiles based on the distributed data_pipe.mak.

After linking program , move it to the SPECD/data_pipe directory for easy ac-
cess by all users.

The subroutines available from the user C code portion of the data-pipe pro-

gram are described below.

The skeleton user C-code part of the data-pipe program should contain the fol-
lowing:

#include <user_pipe.h>

user_code(argc, argv)
char **argv;
{

...
}

The include file user_pipe.h contains declarations of the subroutines available
in the C code. The file resides in the SPECD/data_pipe directory.

REFERENCE MANUAL 125

The subroutine user_code() is called by the overhead part of the data-pipe

program each time data_pipe() is invoked in spec. The parameter argc is

set to the number of space-delimited words present in the string value of the

args parameter to data_pipe() . The parameter argv is an array of character

pointers that point to each of the argc space-delimited words in the args
string. Alternatively, the get_input_string() function (see below) returns

the args string in its entirety.

The user_code() routine will be called every time the data_pipe() function is

called from spec. The data-pipe program does not exit between calls of

user_code() , so you should be careful about allocating memory or opening

files each time user_code() is called without freeing the memory or closing

the files each time user_code() returns. Alternatively, you can make sure

such things are only done the first time user_code() is called.

Besides the argc , argv technique for accessing the args typed in the

data_pipe() call, the following function is available:

char * get_input_string() — Returns a pointer to memory holding a copy of
the second argument args entered with the call to data_pipe() .

If data_pipe() is sending a data group or array to the user code, the following
subroutines provide access to the data parameters and values.

int get_group_number() — Returns the group number specified as the
data_pipe() grp_out argument. A −2 is returned if an array was speci-
fied. A −1 is returned if neither data group or array was specified.

int get_group_npts() — Returns the number of points in the data_pipe()
grp_out or the number of rows in arr_out .

int get_group_width() — Returns the number of elements per point in the
data_pipe() grp_out or the number of columns in arr_out .

int get_input_data(double * x , i nt pts , i nt wid) — Transfers data from the
grp_out or arr_out specified in the call to data_pipe() to the memory
area indicated by the pointer x . The pointer x is treated as an array di-

mensioned as x [pts][wid] . If the data group/array has more

points/rows than pts or more elements/columns than wid , only as many
points/rows or elements/columns as are available in the data
group/array are copied. Data from only a single element/column may be

retrieved using one or more calls of get_input_elem() below. If the

data in the data group from spec is float rather than double (which de-
pends on spec’s installation configuration), float-to-double conversion is
done within the call to get_input_data() . The return value is the

number of points/rows copied.

int get_input_elem(double * x , i nt pts , i nt el) — Transfers one element of
the data from the grp_out or arr_out specified in the call to

126 REFERENCE MANUAL

data_pipe() to the memory area indicated by the pointer x . No more

than pts points are copied from element/column el of the the data

group/array. If the data in the data group from spec is float rather than

double (which depends on spec’s installation configuration), float-to-

double conversion is done within the call to get_input_data() . The re-

turn value is the number of points/rows copied.

The following subroutines allow you to send group/array data back to spec
when data_pipe() is invoked with a grp_in or arr_in argument. For a data

group, the call to data_pipe() will implicitly call data_grp() to configure the

size of the return group according to the parameters set in the following sub-

routines. For an array, the array must already be declared and dimensioned.

There are two ways to send group/array data back to spec. The subroutine

set_return_data() allows you to send the entire data group in one call that

passes both a pointer to the data and the data group size to the data-pipe pro-

gram overhead code. Alternatively, you can use the set_return_group() sub-
routine to configure the data group/array size, followed by one or more calls to
set_return_elem() to set one element/column of the data group/array at a
time.

int get_return_group_number() — Returns the group number specified as the
data_pipe() grp_in argument. A −2 is returned if an array was speci-
fied. A −1 is returned if neither data group or array was specified.

void set_return_data(double * x , i nt pts , i nt wid , i nt last) — Configures
the return data group and copies the data at the same time. The pointer
x is considered as an array of dimension x [pts][wid] for the purpose
of transferring data to the data group. The argument last sets the in-
dex number of the last element added to the group, which is used by the
various data analysis and plotting functions available in spec.

void set_return_group(int pts , i nt wid) — Configures the size of the return
data group without copying data. This subroutine must be called once

before calling set_return_elem() below.

void set_return_elem(double * x , i nt pts , i nt el , i nt last) — Copies one

element to the return data group, which must have been previously con-

figured by a call of set_return_group() , above. If the parameters pts
or el exceed the values configured, or if the return group hasn’t been
configured, the subroutine returns −1. Otherwise zero is returned.

You can set the value that the data_pipe() function returns in spec from the

user C code in your data-pipe process. You can have data_pipe() return a
number or a string or, if necessary, reset to command level. If no explicit re-
turn value is assigned in the user C code, data_pipe() returns zero.

REFERENCE MANUAL 127

int set_return_string(char * s) — Sets the return value of data_pipe() to

the string s . This subroutine returns −1 if memory could not be ob-

tained for the string s , otherwise it returns zero.

void set_return_value(double v) — Sets the return value of data_pipe() to

the value v .

void do_error_return() — Calling this subroutine from the user C code

causes control to pass back to spec without returning data group or

array values, if they have been set. The return value of data_pipe()
will be the value set by set_return_value() above, if such a value has

been set, otherwise the return value of data_pipe() will be −1. This

subroutine does not return.

void do_abort_return() — Calling this subroutine from the user C code

causes control to pass back to spec without returning data group or

array values, if they has been set. In spec, there is no return from

data_pipe() , rather spec resets to command level. This subroutine

does not return.

void do_quit_return() — Calling this subroutine from the user C code causes
control to pass back to spec normally as if user_code() returned nor-
mally, but the data-pipe program will then exit. This subroutine does
not return.

Client/Server Functions

prop_send(property , value) —

prop_get(host , property) —

prop_put(host , property , value) —

prop_watch(host , property) —

remote_stat(host) —

remote_stat(host , " ?") —

remote_par(host , " connect") —

remote_par(host , " close") —

remote_par(host , " abort") —

remote_par(host , " timeout" [, value]) —

remote_cmd(host , cmd) —

remote_eval(host , cmd) —

128 REFERENCE MANUAL

id = r emote_async(host , cmd) —

remote_poll(id , " status") —

remote_poll(id) —

encode(format , obj [, ...]) — Returns a string representation of the spec data ob-

jects obj ... in the specified format .

decode(format , str — Returns a spec data object obtained from the string str in

format .

Hardware Functions and Commands

Controlling Motors

move_all — This command sets motors in motion. The sequence of events is as fol-

lows. For some motor controllers, spec first examines the controller registers
of all nonbusy motors and makes sure the contents agree with the current po-
sitions in program memory. If there is a discrepancy, the user is asked to
choose the correct position. Next, spec prepares to move all motors that are
not already at the positions specified in the built-in A[] array, interpreted in
user units. A motor will not be moved if it is currently moving or if it is
marked as protected (via the configuration file) or unusable (due to failure of a
hardware presence test). If the target position of any of the motors is outside
the software limits, the entire move is canceled, and the program resets to
command level. Otherwise, the motors are started, and the command returns.

The sequence of commands when using move_all should almost always be,

wait(1) # Wait for moving to finish
read_motors(0) # Put current positions of all motors in A[]
(Assign new values to elements of A[] to be moved)
move_all # Move to those positions

If read_motors() is called before the motors have stopped, the values in A[]
will reflect the motor positions before they stopped. If read_motors() is not

called at all, or if you do not explicitly assign a value to each element of A[] ,
then you will not know for sure where some motors will be going when
move_all is called.

A ˆC halts moving, as does the sync command.

move_cnt — This command is similar to move_all , described above, but with the fol-
lowing differences. Just before the motors are started, the clock/timer is en-
abled and programmed to gate the scalers with a longer-than-necessary count

time. The motors are then started at the base rate set in the config file, but are

REFERENCE MANUAL 129

not accelerated to the steady-state rate. No backlash correction is done at the

end of the move. When the move is completed, the clock/timer is stopped. The

move_cnt command is used in powder-averaging scans. (See the powder-mode

macros on page 178.)

sync — If any motors are moving, they are halted. The motor positions maintained

by the motor controller are then compared with the motor positions currently

set in the program. If there is a discrepancy, the user is asked which should be

changed. The sync command is used to place the motor hardware in a known

state and is supposed to fix any problems in communicating with the con-

trollers.

motor_mne(motor) — Returns the string mnemonic of motor number motor as given

in the configuration file. (Mnemonics are, at most, 7 characters long.) Resets

to command level if not configured for motor .

motor_name(motor) — Returns the string name of motor number motor as given in
the configuration file. (Names are, at most, 15 characters long.) Returns "?"
if not configured for motor .

motor_num(mne) — Returns the motor number corresponding to the motor mnemonic
mne, or −1 if there is no such motor configured. As of spec release 6.05.01, mne
can be a variable or an expression. If mne is an uninitialized variable, −1 is re-
turned.

motor_par(motor , par [, val]) — Returns or sets configuration parameters for mo-
tor motor . Recognized values for the string par follow. Note, not all parame-
ters are meaningful for all motor controllers.

"step_size" — returns the current step-size parameter. The units are gener-
ally in steps per degree or steps per millimeter. If val is given, then the
parameter is set to that value, but only if changes to the step-size pa-
rameter have been enabled using spec_par("modify_step_size",
"yes") .

"acceleration" — returns the value of the current acceleration parameter.
The units of acceleration are the time in milliseconds for the motor to
accelerate to full speed. If val is given, then the acceleration is set to

that value.

"base_rate" — returns the current base-rate parameter. The units are steps

per second. If val is given, then the base rate is set to that value.

"velocity" — returns the current steady-state velocity parameter. The units

are steps per second. If val is given, then the steady-state velocity is set

to that value.

"backlash" — returns the value of the backlash parameter. Its sign and mag-

nitude determine the direction and extent of the motor’s backlash

130 REFERENCE MANUAL

correction. If val is given, then the backlash is set to that value. Set-

ting the backlash to zero disables the backlash correction.

"config_step_size" — returns the step-size parameter contained in the config

file.

"config_acceleration" — returns the acceleration parameter contained in the

config file.

"config_velocity" — returns the steady-state velocity parameter contained in

the config file.

"config_base_rate" — returns the base-rate parameter contained in the config

file.

"config_backlash" — returns the backlash parameter contained in the config

file.

"controller" — returns a string containing the controller name of the speci-

fied motor. The controller names are those used in spec’s config files.

"unit" — returns the unit number of the specified motor. Each motor con-
troller unit may contain more than one motor channel.

"channel" — returns the channel number of the specified motor.

"responsive" — returns a nonzero value if the motor responded to an initial
presence test or appears otherwise to be working.

"active" — returns a nonzero value if the motor is currently moving.

"disable" — returns a nonzero value if the motor has been disabled by soft-
ware. If val is given and is nonzero, then the motor is disabled. If val
is given and is zero, the motor becomes no longer disabled. A disabled
motor channel will not be accessed by any of spec’s commands, and, of
course, cannot be moved. Any cdef() -defined macros will automatically
exclude the portions of the macro keyed to the particular motor when
the motor is software disabled.

"slop" — returns the value of the slop parameter. If val is given, sets the slop
parameter. When this parameter is present, discrepancies between

hardware and software motors positions are silently resolved in favor of

the the hardware when the number of steps in the discrepancy is less
than the value of the slop parameter. (Not yet implemented for all mo-
tor controllers.)

"home_slew_rate" — returns the value of the home-slew-rate parameter. If
val is given, sets the parameter. This parameter is the steady-state ve-

locity used during a home search. (Only available for selected con-

trollers.)

"home_base_rate" — returns the value of the home-base-rate parameter. If

val is given, sets the parameter. This parameter is the base-rate veloc-
ity used during a home search. (Only available for selected controllers.)

REFERENCE MANUAL 131

"home_acceleration" — returns the value of the home-acceleration parameter.

If val is given, sets the parameter. This parameter is the acceleration

used during a home search. (Only available for selected controllers.)

"dc_dead_band" — returns the value of the dead-band parameter for certain

DC motors. Sets the parameter if val is given.

"dc_settle_time" — returns the value of the settle-time parameter for certain

DC motors. Sets the parameter if val is given.

"dc_gain" — returns the value of the gain parameter for certain DC motors.

Sets the parameter if val is given.

"dc_dynamic_gain" — returns the value of the dynamic-gain parameter for cer-

tain DC motors. Sets the parameter if val is given.

"dc_damping_constant" — returns the value of the damping-constant parame-

ter for certain DC motors. Sets the parameter if val is given.

"dc_integration_constant" — returns the value of the integration-constant

parameter for certain DC motors. Sets the parameter if val is given.

"dc_integration_limit" — returns the value of the integration-limit parame-
ter for certain DC motors. Sets the parameter if val is given.

"dc_following_error" — returns the value of the dc-following parameter for
certain DC motors. Sets the parameter if val is given.

"dc_sampling_interval" — returns the value of the sampling-interval parame-
ter for certain DC motors. Sets the parameter if val is given.

"encoder_step_size" — returns the value of the encoder step size parameter.
Sets the parameter if val is given.

"step_mode" — returns the value of the step-mode parameter. Sets the param-
eter if val is given. A zero indicates full-step mode, while a one indi-
cates half-step mode.

"deceleration" — returns the value of the deceleration parameter. Sets the
parameter if val is given.

"torque" — returns the value of the torque parameter. Sets the parameter if

val is given.

Rereading the config file resets the values of all the motor parameters to the
values in the config file. Little consistency checking is done by spec on the val-
ues programmed with motor_par() . You must be sure to use values meaning-

ful to your particular motor controller.

In addition, device-dependent values for par are available for specific motor
controllers. See the Hardware Reference for values for specific controllers.

dial(motor , user_angle) — Returns the dial angle for motor motor corresponding to

user angle user_angle using the current offset between user and dial angles

for motor . The value returned is (user_angle − offset) / sign, where sign is ±1

132 REFERENCE MANUAL

and is set in the config file. The value is rounded to the motor resolution as set

by the step-size parameter in the config file. Resets to command level if not

configured for motor motor .

read_motors(how) — Reads the current motor positions from the motor controllers

and places the values in the A[] array, depending on the value of the argument

how . If bit 1 is set, the function returns dial values, otherwise user values are

returned. If bit 2 is set, a forced read of all hardware takes place. (For effi-

ciency, normally most motor controllers are not read if the position hasn’t been

changed by a move.) If bit 3 is set and if there is a discrepancy between the

software and hardware, the software will be silently corrected to match the

hardware. Note, the forced-read and “silent-sync” features are not yet imple-

mented for all motor controllers. Check the Hardware Reference or contact

CSS for hardware-specific information.

move_info([motor | keyword | motor , keyword]) — The move_info() function returns

information about what would happen on a subsequent move_all command
given the current motor positions and current values in the A[] array. Such a
function might be called, for example, within the user_premove macro to de-
termine which motors will be moved to allow extra limit checking involving the
relative postions of motors.

If called with no arguments, returns a two-dimensional associative array con-
taining the move information. The array is indexed by motor number and in-
formation keyword. The keywords are:

"to_move" nonzero if motor will move
"error" reason the motor will not move
"commanded" the commanded position
"magnitude" magnitude of the move in user units
"current" current position in user units

"current_dial" current position in dial units
"target" target position in user units
"target_dial" target position in dial units

"backlash" backlash for this move in user units

"leftover" remainder due to motor resolution

If called with a single argument that is one of the above keywords, the function
returns a one-dimensional associative array indexed by motor number contain-

ing values for that keyword for each motor. If called with a motor number or

mnemonic as a single argument, the function returns a one-dimensional asso-
ciative array, indexed by the above keywords containing values for the one mo-
tor. If called with two arguments, motor number and keyword, the function

REFERENCE MANUAL 133

returns the corresponding single value.

No matter how the function is called, the internal code will calculate values for

all motors. Thus, if multiple values are needed, it is most efficient and recom-

mended to call the function once selecting arguments that will return all the

needed values.

The "to_move" element will be 1 or 0, indicating whether the motor would

move or not. If there is condition that prevents the move, the "error" element

will contain one of these strings:

"low limit" move exceeds low limit

"high limit" move exceeds high limit

"busy" motor is busy

"read only" motor is configured as read only

"protected" motor configuration does not allow moving

"disabled" motor has been disabled
"externally disabled" shared motor has been disabled
"unusable" motor did not respond to presence test

Otherwise, there will be no "error" array element.

The "target" and "target_dial" values are the final position after backlash.
The "magnitude" value contains the distance to the target position and does
not include the magnitude of the backlash.

The "leftover" value is the fractional value that is the difference between the
requested position and the achievable position given the finite resolution of the
motor. For example, if a motor has 1000 steps per degree, each step corre-
sponds to 0.001 degrees. If one asks to move the motor to a position of 1.0004
degrees, the motor will move to 1 degree and the leftover value will be 0.0004
degrees.

The "commanded" value is the target position in user units to the full precision
requested. The other postion-related values are rounded to the motor resolu-
tion. The "commanded" position is saved after a move and is available using

special arguments to the built-in read_motors() functions.

As mentioned above, if multiple values are needed, it is better to make a single
call of move_info() saving the return values in an array, rather than making
multiple calls, as each call involves calculations for all the motor positions and

values, even if only selected values are returned. For example,

134 REFERENCE MANUAL

{
local i, m[]
m = move_info()
for (i = 0; i < MOTORS; i++)

if (m[i]["to_move"]) {
...

}
}

For the most part, the move_info() function will reflect what will happen on

the next move_all command. However, for shared motors that can be moved

by other processes or for motors that have positions that drift or have jitter,

the status and position may change between the move_info() call and the

move_all call.

chg_dial(motor , dial_angle) — Sets the dial position of motor motor to dial_angle .

Returns nonzero if not configured for motor or if the protection flags prevent

the user from changing the limits on this motor. Resets to command level if

any motors are moving.

chg_dial(motor , cmd) — Starts motor motor on a home or limit search, according to
the value of cmd as follows:

"home+" — Move to home switch in positive direction.

"home-" — Move to home switch in negative direction.

"home" — Move to home switch in positive direction if current dial position is
less than zero, otherwise move to home switch in negative direction.

"lim+" — Move to limit switch in positive direction.

"lim-" — Move to limit switch in negative direction.

Positive and negative direction are with respect to the dial position of the mo-
tor. (At present, most motor controllers do not implement the home or limit
search feature.) Returns −1 if not configured for motor motor or if the motor is
protected, unusable or moving, else returns zero.

get_lim(motor , flag) — Returns the dial limit of motor number motor . If

flag > 0, returns the high limit. If flag < 0, returns the low limit. Resets

to command level if not configured for motor .

user(motor , dial_angle) — Returns the user angle for motor corresponding to dial
angle dial_angle using the current offset between user and dial angles for mo-
tor . The value returned is sign × dial_angle + offset, where sign is ±1 and is

set in the config file. The value is rounded to the motor resolution as set by the
step-size parameter in the config file. Resets to command level if not config-
ured for motor .

REFERENCE MANUAL 135

chg_offset(motor , user_angle) — Sets the offset between the dial angle and the

user angle, using the current dial position and the argument user_angle for

motor motor according to the relation user_angle = offset + sign × dial_angle

where sign is ±1 and is set in the config file. Returns nonzero if not configured

for motor . Resets to command level if any motors are moving.

set_lim(motor , low , high) — Sets the low and high limits of motor number motor .

low and high are in dial units. It does not actually matter in which order the

limits are given. Returns nonzero if not configured for motor or if the protec-

tion flags prevent the user from changing the limits on this motor. Resets to

command level if any motors are moving.

Counting

mcount(counts) — Starts the timer/clock counting for counts monitor counts. Re-

turns zero.

tcount(t) — Starts the timer/clock counting for t seconds, where t may be noninte-
gral. Returns zero.

getcounts — Loads the built-in array S[] with the contents of the scalers.

cnt_mne(counter) — Returns the string mnemonic of counter number counter as
given in the configuration file. (Mnemonics are, at most, 7 characters long.)
Resets to command level if not configured for counter .

cnt_name(counter) — Returns the string name of counter number counter as given
in the configuration file. (Names are, at most, 15 characters long.) Returns
"?" if not configured for counter .

cnt_num(mne) — Returns the counter number corresponding to the counter mnemonic
mne, or −1 if there is no such counter configured. As of spec release 6.05.01,

mne can be a variable or an expression. If mne is an uninitialized variable, −1

is returned.

counter_par(counter , par [, val]) — Returns or sets parameters associated with
counter number counter as given in the configuration file. The following par
arguments are supported for all counters:

"unit" — returns the unit number of the indicated counter.

"channel" — returns the channel number of the indicated counter.

"scale" — returns the value of the scale factor set in the config file for the in-
dicated counter.

"responsive" — returns nonzero if the hardware appears to be working for the
indicated counter.

136 REFERENCE MANUAL

"controller" — returns a string that indicates the controller type of the indi-

cated counter.

"disable" — returns a nonzero value if the counter has been disabled by soft-

ware. If val is given and is nonzero, then the counter is disabled. If val
is given and is zero, the counter becomes no longer disabled. A disabled

counter channel will not be accessed by any of spec’s counting com-

mands. Any cdef() -defined macros will automatically exclude the por-

tions of the macro keyed to the particular counter when the counter is

software disabled.

In addition, device-dependent values for par are available for specific counter

models. See the Hardware Reference for values for specific controllers.

The counting functions mcount() and tcount() both program the timer/clock for a

specified count time. Before the count period begins, both functions clear and enable

all configured scalers and MCAs. The routines return immediately, as counting is

asynchronous. Use wait() , described below, to determine if counting has been com-
pleted. A ˆC will halt the timer/clock.

When the count time has expired, or counting is aborted by a ˆC , the scalers and
MCAs are disabled. Normally, enable signals from the timer/clock are used to di-
rectly gate the scalers or MCAs. Software gating takes place whether or not hard-
ware gating is in place and can be used in lieu of hardware gating, although the in-
terval over which the gating occurs will not be as precisely controlled.

Miscellaneous

reconfig — Reconfigures the hardware. This command obtains any modified config-
uration information, including hardware devices and types, CAMAC slot as-
signments and motor parameters and settings, from the config and settings

files. The sequence of events is as follows:

First, spec waits for all asynchronous activity (moving and counting) to finish.
It then does a sync of the motor controller registers, comparing them with the

internal program positions. Next, all open devices are closed. The config file is

then read to obtain the configuration information, and the program opens and
possibly does hardware presence tests on the selected devices. Finally, the in-
ternal program motor positions are updated from the settings file and then

resynchronized with the motor hardware.

set_sim(how) — If how is 0, simulate mode is turned off. If how is 1 (or positive), sim-
ulate mode is turned on. In either case the program waits for moving and
counting to finish before changing the mode, and the function returns the pre-

vious mode (0 or 1). If how is −1 (or negative) the function returns the current

REFERENCE MANUAL 137

value of simulation mode without changing it. Whenever simulation mode is

turned off, the motor settings file is reread to restore the motor positions. Sim-

ulation mode cannot be turned off if spec was invoked with the −s flag.

wait() — Waits for all active motors, timers, counters, MCA- and image-type activity

to complete. Returns true.

wait(mode) — Waits for specified activity to complete or returns status indicating

whether specified activity is active. The function wait() is used to synchro-

nize the flow of commands in spec with moving, counting and other activity.

Since the built-in commands and functions move_all , move_cnt , tcount()
and mcount() return immediately after starting moving or counting, macros

need to include some form of wait() if the next command requires the previ-

ous move or count to complete.

Bits set in the mode argument affect the behavior as follows:

Bit Value Activity Waited For Or Other Action
0 Moving, counting and other acquisition

0 1 Moving
1 2 Counting (by the master timer)
2 4 Other acquisition (MCAs, CCDs, etc.)
3 8 Remote connections and remote asynchronous events
4 16 Shared motors started by other clients
5 32 Return zero or nonzero to indicate if busy

If mode is a negative number, wait() will behave as for mode = 0, but a mes-
sage will be printed showing what is being waited on.

For acquisition devices with "auto_run" mode enabled (such devices are
started automatically during counting), waiting for counting will also include
waiting for those devices.

When spec is running as client to a spec server, bit 3 checks if re-
mote_async() replies have all arrived. In addition, bit 3 also checks if all con-
figured spec servers have connected and if all spec server and EPICS remote

motors have connected.

Waiting for spec server and remote motor connections is mainly an issue on
start up or after reconfig . One might use wait(8) or wait(0x28) in the
built-in special macro config_mac if it is important to delay until all connec-

tions are up. Note, until remote spec server and EPICS motors are fully con-

nected and usable, the positions reported for those motors will be the last
saved positions from spec’s settings file.

138 REFERENCE MANUAL

When spec is configured with shared motors either on a spec server or using

EPICS channel access, if those motors are started by a different client, setting

bit 4, as in wait(16) will cause spec to wait until those motors have completed

their move. Waiting can be interrupted with a ˆC , but that will not stop the

motors.

Also, note that wait(0) does not check for the events flagged by bits 3 or 4. To

wait for remote events or externally busy motors requires explicitly setting bits

3 or 4 in mode. Also, a ˆC interrupts a wait(8) or wait(16) but doesn’t change

the conditions that caused wait(8) or wait(16) to block. That is, the next

wait(8) will still block if there are still pending connections, and the next

wait(16) will still block if the external motors are still moving.

If bit 5 (0x20) in mode is set, wait() returns true (1) if the activities flagged by

bits 0, 1, 2, 3 or 4 are still going on, otherwise wait() returns false (0).

stop() — Stops all asynchronous activity. Returns true.

stop(mode) — If mode has bit one set (1), stops all motors that are moving. If mode
has bit two set (2), stops the timer, counters and any other data acquisition
(multi-channel scaling, for example).

MCA (1D) Data Acquisition

mca_sel(n) — Selects which MCA-type device to use with subsequent mca_get() ,
mca_put() and mca_par() commands. The numbering of MCA-type devices is
set in the config file. Returns −1 if not configured for device n , otherwise re-
turns zero. It is not necessary to use mca_sel() if only one MCA-type device is
configured. The selected MCA-type device does not change when reading the
config file with the reconfig command.

mca_sel("?") — Lists the configured MCA devices, with the currently selected device

marked with an asterisk.

mca_par(par [, val]) — A device-dependent function to access various features and
parameters of the currently selected MCA-type device. The string par selects
an option. The argument val contains an optional numeric value. See the

help file for the particular device for implemented options and return values.

mca_get(grp , elem) or mca_get(array) — Gets data from the currently selected
MCA-type device, and transfers it to element elem of data group grp or to the
elements of the data array array . Generally returns the number of points

read or −1 for failure.

REFERENCE MANUAL 139

mca_put(grp , elem) or mca_put(array) — Sends data from data group grp , element

elem or from the data array array to the currently selected MCA-type device.

Generally returns the number of points written or −1 for failure.

mca_spar(sel , par [, val]) — As mca_par() above, but selects which MCA device

with the sel argument.

mca_sget(sel , grp , elem) or mca_sget(sel , array) — As mca_get() above, but se-

lects which MCA device with the sel argument.

mca_sput(sel , grp , elem) or mca_sput(sel , array) — As mca_put() above, but se-

lects which MCA device with the sel argument.

Image (2D) Data Acquisition

image_par(sel , par [, val]) —

image_get(sel , array) —

image_put(sel , array)" —

Socket Functions

spec user-level socket functions connect and communicate with sockets created by
other processes on the local platform or on a remote host. Most of the function calls
require a string in the form " host : port " as the first argument to specify the socket.
The host can be specified by a symbolic name or by an IP address. The port number
is assigned by the process that created the socket.

sock_get(" host : port ") — Reads and returns as many characters as are already
available. If no characters are immediately available, waits for input and re-
turns the first character(s) that show up, or returns a null string if no charac-
ters arrive before the time-out expires. The maximum number of characters

that can be read at a time is this mode is 8191 characters.

sock_get(" host : port ", n) — Reads up to n characters or until a timeout. If n is zero,
the routine reads up to a newline or the maximum of 8191 characters, which-
ever comes first. In any case, if the read is not satisfied before a timeout, the

routine returns the null string.

sock_get(" host : port ", eos) — Reads characters until a portion of the input matches
the string eos and returns the string so obtained, including the end-of-string
characters. If no match to the end-of-string characters is found within the

timeout period, the null string is returned.

140 REFERENCE MANUAL

sock_get(" host : port ", d) — Reads incoming bytes into the data array d . The size

of d determines how many bytes are to be read. Sub-array syntax can be used

to limit the number of bytes. The function returns the number of array ele-

ments read, or zero if the read times out. Note, no byte re-ordering is done for

short- or long-integer data, and no format conversions are done for float or dou-

ble data.

sock_get(" host : port ", mode) — If mode is the string "byte" , reads and returns one

unsigned binary byte. If mode is the string "short" , reads two binary bytes

and returns the short integer so formed. If mode is the string "long" , reads

four binary bytes and returns the long integer so formed. The last two modes

work the same on both big-endian and little-endian platforms. On both, the in-

coming data is treated as bigendian If the incoming data is littleendian use

"short_swap" or "long_swap" .

sock_put(" host : port ", s) — Writes the string s to the socket described by

" host : port . Returns the number of bytes written.

sock_put(" host : port ", d, [, cnt]) — Writes the contents of the data array d to the
socket described by " host : port . By default, the entire array (or subarray, if
specified) will be sent. The optional third argument cnt can be used to specify
the number of array elements to send. For short and long integer arrays, the
data will be sent using native byte order. The "swap" option of the array_op()
function can be used to change the byte order, if necessary. No format conver-
sions are available for float or double data. Returns the number of bytes writ-
ten.

sock_par(" host : port ", cmd [, arg]) — Accesses various features for the given
socket with values for cmd as follows:

"?" — Lists the available commands.

"show" — Lists the existing sockets along with additional information, such as

whether the socket is UDP type, whether the socket is internal (as op-
posed to a user-level socket created by one of the functions described in
this document) and whether the socket is set up for listening. The com-

mand does not check whether the connection is still alive.

"info" — Returns a string that contains the information displayed by the

"show" command described above.

"connect" — Opens a socket to the specified host and port. Returns true for

success and false for failure. With the string "silent" as optional ar-

gument, error messages won’t be shown (as of spec release 6.00.02).

"connect_udp" — Opens a socket to the specified host and port using the UDP

protocol. Returns true for success and false for failure. With the string
"silent" as optional option, error messages won’t be shown (as of spec

REFERENCE MANUAL 141

release 6.00.02).

"listen" — Sets up a socket for listening, allowing another instance of spec or

some other program to make a connection.

"close" — Closes the socket associated with the specified host and port.

"flush" — Flushes spec’s input queue for the socket at " host : port . The in-

put queue may contain characters if a sock_get() times out before the

read is satisfied, or if more characters arrive than are requested.

"ignore_sim" — With arg set to 1 or 0, turns ignore-simulate mode on or off,

respectively. Otherwise, returns the current state. When ignore-simu-

late mode is on, the sock_get() , sock_put() and sock_par() com-

mands will work even when simulate mode is on. Note, simulate mode

must be off to create a new socket connection.

"queue" — Returns the number of characters in the socket’s input queue. The

input queue may contain characters if a sock_get() times out before

the read is satisfied, or if more characters arrive than are requested.
"timeout" 1i Returns or sets the read timeout for the socket described
by " host : port . The units for arg are seconds. A value of zero indicates
no timeout − a sock_get() will wait until the read is satisfied or is in-
terrupted by a ˆC . The smallest allowed value of 0.001 will cause the
sock_get() to return immediately. A negative value resets the timeout
to the default of five seconds.

"nodelay" — A value for arg of 1 or 0 sets or clears the state of the
TCP_NODELAY socket option. With no argument, the current state is
retruned. Normally, the underlying TCP protocol sends data along as it
is made available. However, if the previous data packet has not yet re-
ceived acknowledgment from the client, the protocol holds onto and
gathers small amounts of data into a single packet which will be sent
once the pending acknowledgment is received or the size of the packet

exceeds a threshold. This algorithm increases network efficiency. For
some clients that send a stream of short packets that receive no replies,
this algorithm may cause unwanted delays. Set the "nodelay" option to

1 to turn off the algorithm, which corresponds to setting the

TCP_NODELAY option at the system level.

All the sock_get() calls will store leftover bytes in a queue. Contents from
the queue will be returned on a subsequent sock_get() call. Bytes are left-

over if the read finishes with a timeout, if more bytes have arrived than are

asked for or if more bytes are available after an end-of-string match. Use the
"flush" option of sock_par() to clear the input queue, if needed.

To transfer binary byte streams containing null bytes, use the data-array ver-

sions of sock_get() and sock_put() with byte arrays. Null bytes mark the

142 REFERENCE MANUAL

end of a normal string.

Note, the "connect" command isn’t required to open a TCP connection, as the

sock_get() and sock_put() functions will automatically open the connection

if it doesn’t already exist. The return value from the "connect" command,

however, may be useful as a test on whether a given socket can be created. To

create a UDP connection, however, the "connect_udp" command must be

used.

Connections remain open until closed with the "close" option to

"spec_par()" . Sockets created at user level are not closed on a hardware

"reconfig" .

The following example connects to the echo service on port 7 of the local host:

24.FOURC> sock_put("localhost:7", "This is a test.\n")

25.FOURC> print sock_get("localhost:7")
This is a test.

26.FOURC>

RS-232 Serial Interfaces

Generic user-level access to the serial ports is through the ser_get() , ser_put()
and ser_par() functions described in the following sections. The generic serial devices
are configured on the Interfaces screen of the configuration editor. Each serial device
is numbered, starting from zero, and that number is the first parameter addr in the
functions below. Up to 21 serial devices can be configured, numbered from 0 to 20.

Do not configure a generic serial device when the associated device node is for a mo-
tor controller, counter/timer or other acquisition device that uses spec’s built-in sup-

port. The serial device associated with such controllers is specified as part of the con-
troller configuration

The default serial interface is through the built-in standard UNIX serial driver.

However, the same user functions can access serial devices configured to use EPICS ,

TACO, or SOCKETinterfaces.

Supported baud settings are 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400,
19200, 28800, 38400, 57600, 115200, 230400, 460800, 921600, 1000000, 1152000,

1500000, 2000000, 2500000, 3000000, 3500000 and 4000000 baud. However, not all

baud rates are supported by all platforms and by all serial interface hardware.

The baud rate setting is ignored for the SOCKETtype of interface. See the documenta-
tion associated with a particular Ethernet-to-serial device for procedures to set the

REFERENCE MANUAL 143

serial port parameters.

Serial interfaces have associated modes, some of which can be set in spec’s configura-

tion editor and some with the ser_par() function. There are many more mode pa-

rameters than those described below. Only the parameters that have been found to

be needed by spec users can be configured.

The standard serial ports can be configured in either raw mode or several flavors of

cooked mode. In raw mode, the kernel does minimal processing of the bytes trans-

mitted and received, generally passing all of the 256 possible values through. Also,

the received bytes are available to spec as soon as they are received by the kernel.

For transferring binary data, raw mode is essential. On some platforms, a seven-bit

raw mode is available, where the eighth bit is used for parity.

In cooked mode, the kernel buffers the incoming data. The input data only becomes

available to be read by spec when a newline or carriage return is received. Also, the

kernel may do some processing of the data, such as converting tabs to spaces on out-
put or processing delete or line-erase characters on input. The character processing
makes cooked mode inappropriate for receiving binary data. The various flavors of
cooked mode implemented in spec set whether to use even or odd parity or no parity,
whether to disable software flow control and whether to ignore carriage returns on
input.

spec does turn off input echoing in both raw and cooked modes.

Note, the TACO, EPICS and SOCKETinterface types only support raw mode.

ser_get(addr) — If the serial device addr is in cooked mode, reads and returns a
string of bytes, up to and including a newline character, or returns the null
string if the read times out. If the device is in raw mode, the function reads
and returns as many characters as are already available in the queue. If no
characters are available, waits for a character and returns it, or returns a null

string if no characters become available within the time-out period. The maxi-
mum string length in this mode is 8191 characters.

ser_get(addr , n) — If the serial device addr is in cooked mode, reads up to a new-

line, but no more than n bytes and returns the string so obtained. In cooked

mode, no characters can be read until a newline is received. In raw mode,
reads up to n characters or until a timeout. If n is zero, the routine reads up to
a newline or the maximum of 8191 characters, whichever comes first. In both

cases, if the read is not satisfied before a timeout, the routine returns the null

string.

ser_get(addr , eos) — Reads characters until a portion of the input matches the
string eos and returns the string so obtained, including the end-of-string char-

acters. If no match to the end-of-string characters is found within the timeout

144 REFERENCE MANUAL

period, the null string is returned.

ser_get(addr , d) — Reads incoming bytes into the data array d . The size of d deter-

mines how many bytes are to be read. Sub-array syntax can be used to limit

the number of bytes. The function returns the number of array elements read,

or zero if the read times out. Note, no byte re-ordering is done for short- or

long-integer data, and no format conversions are done for float or double data.

ser_get(addr , mode) — If mode is the string "byte" , reads and returns one unsigned

binary byte. If mode is the string "short" , reads two binary bytes and returns

the short integer so formed. If mode is the string "long" , reads four binary

bytes and returns the long integer so formed. The last two modes work the

same on both big-endian and little-endian platforms. On both, the incoming

data is treated as bigendian If the incoming data is littleendian use

"short_swap" or "long_swap" .

ser_put(addr , s) — Writes the string s to the serial device with address addr . Re-
turns the number of bytes written.

ser_put(addr , d, [, cnt]) — Writes the contents of the data array d to the serial
device with address addr . By default, the entire array (or subarray, if speci-
fied) will be sent. The optional third argument cnt can be used to specify the
number of array elements to send. For short and long integer arrays, the data
will be sent using native byte order. The "swap" option of the array_op()
function can be used to change the byte order, if necessary. No format conver-
sions are available for float or double data. Returns the number of bytes writ-
ten.

ser_par(addr , cmd [, arg]) — Accesses various features for the given socket with
values for cmd as follows:

"device_id" — Returns the name of the associated serial device or −1 if there
is no serial device configured as addr .

"responsive" — Returns 1 if the associated serial device is open, 0 if the de-
vice could not be opened and −1 if there is no serial device configured as

addr .

"drain" — Waits for pending output on the associated serial device to be

transmitted, but can be interrupted with ˆC . Use the "flush" option,

described next, to empty the output queue.

"flush" — Flushes the input and/or output queues for the serial device with

address addr . If the optional argument arg is zero or absent, the input
queue is flushed. If Otherwise, both queues are flushed. The in-
put queue may contain characters if a ser_get() times out be-
fore the read is satisfied, or if more characters arrive than
are requested.

REFERENCE MANUAL 145

"queue" — Returns the number of characters in the serial device’s input

queue. The input queue may contain characters if a ser_get() times

out before the read is satisfied, or if more characters arrive than are re-

quested.

"timeout" — Returns or sets the read timeout for the serial device with ad-

dress addr . The units for arg are seconds. A value of zero indicates no

timeout − a ser_get() will wait until the read is satisfied or is inter-

rupted by a ˆC . The smallest allowed value of 0.001 will cause the

ser_get() to return immediately. A negative value resets the timeout

to the default of two seconds.

"baud" — Returns or sets the baud rate for the serial device with address

addr . Valid baud rates are from 300 to 4000000. The function returns

the device’s baud rate. If arg isn’t valid or if there was an error, the

function returns −1. Reading the hardware config file resets the baud

rate to the value in the file. spec cannot set the baud rate on SOCKETin-

terfaces.

"stop_bits" — Returns or sets the stop-bits value for the serial device with
address Normal values are one or two. The default value of one is ap-
propriate for nearly every serial device, and this command should very
rarely be needed. Note, to set the non-default value, this command will
need to be issued each time after reading the hardware config file. This
mode is not supported on SOCKETinterfaces.

"data_bits" — Returns or sets the data-bits value for the serial device with
address addr . Accepted values are 5, 6, 7 and 8. The default values of
seven if parity is enabled and eight if parity is disabled should work for
nearly every serial device, and this command should very rarely be
needed. Note, to override the default value, this command needs to be
issued after reading the hardware configfile reconfig). This mode is
not supported on SOCKETinterfaces.

"dtr" — Returns the current setting or sets or clears the Data Terminal Ready
(DTR) control line. Only available on standard serial interfaces. Reset

on hardware reconfiguration.

"rts" — Returns the current setting or sets or clears the Request To Send
(RTS) control line. Only available on standard serial interfaces. Reset

on hardware reconfiguration.

"dsr" — Returns the current setting of the Data Set Ready (DSR) control line.

Only available on standard serial interfaces.

Values for any combination of the parameters "timeout" , "baud" ,
"stop_bits" , "data_bits" , "dtr" , and "rts" can be set in one call of
ser_par() by combining assignments in a comma-separated list, as in

146 REFERENCE MANUAL

ser_par(addr , " timeout=1.5,baud=28800,stop_bits=2,data_bits=8")

All the ser_get() calls will store leftover bytes in a queue. Contents from the

queue will be returned on a subsequent ser_get() call. Bytes are leftover if

the read finishes with a timeout, if more bytes have arrived than are asked for

or if more bytes are available after an end-of-string match. Use the "flush"
option of ser_par() to clear the input queue, if needed.

To transfer binary byte streams containing null bytes, use the data-array ver-

sions of ser_get() and ser_put() with byte arrays. Null bytes mark the end

of a normal string. Reads a string of characters, up to and including a newline,

from serial device dev_num and returns the string so read. The routine will not

return until the read is satisfied. Use ser_get(dev_num , 0) to read up to a

newline with a timeout.

GPIB (IEEE-488) Hardware Functions

GPIB functions are available if the appropriate hardware and software drivers have
been installed on the computer. Information in the config file describes the particular
GPIB hardware in use. Refer to the Administrator’s Guide for information on the
supported GPIB controllers and how to install the corresponding drivers.

spec allows up to four GPIB controllers to be in use at once. The controller unit
numbers are set in the config file. For the functions below, there are two methods by
which the unit number can be specified. If no unit number is specified, the default,
unit 0, is used. The first method of addressing is of the form "unit:addr" where the
quotes are required. Alternatively, the unit number can be coded in the GPIB ad-
dress as unit × 100 + addr .

gpib_cntl(addr , cmd) — Performs the selected GPIB command on the device with
address addr . The string cmd is one of the following:

"gtl" — Go to local.

"llo" — Local lockout.

"sdc" — Selected device clear.

"dcl" — Device clear (sent to all devices).

"get" — Group execute trigger (sent to addressed device).

"ifc" — Interface clear. This command resets the GPIB bus by sending the
IFC message. The address addr is ignored. spec runs the same code se-

quence with the "ifc" command as it does when it initializes the GPIB

controller on start up or on the reconfig command. For most con-
trollers, spec sleeps for some fraction of a second after resetting the bus.
Also, for most controllers, spec asserts the REN (remote enable)

REFERENCE MANUAL 147

command after sending IFC.

"responsive" — Not a GPIB command, but returns 1 or 0 indicating whether

the associated controller is configured and working. Note, the test is on

the controller, not the device. To test controllers other than unit 0, the

address syntax for addr is "1:1" or 101 for unit 1, etc. The device ad-

dress isn’t looked at for this option.

gpib_get(addr) — Returns a string from the GPIB device with address addr . The

device must terminate the string with either a newline (\ n) or a carriage re-

turn and a newline (\ r\ n). In either case, the terminator is removed before

the string is returned. At most, 8,192 characters can be read at a time.

gpib_get(addr , n) — As above, but reads n bytes and does not look for or remove the

terminator.

gpib_get(addr , s) — As above, but tries to read up to the terminator given by the

first character of the string s , except for the special cases described below. The
terminator is removed.

gpib_get(addr , mode) — If mode is the string "byte" , reads and returns one un-
signed binary byte. The following modes read short or long integers and work
the same on both big-endian and little-endian platforms. If mode is the string
"int2" reads two binary bytes and returns the short integer so formed. If
mode is the string "int4" reads four binary bytes and returns the long integer
so formed. By default, the incoming data is treated as big endian. If the in-
coming data is little endian, use "int2_swap" or "int4_swap" .

gpib_put(addr , string) — Writes the string string to the device with GPIB address
addr . Returns the number of bytes written. The length of the string is not
limited, but null bytes cannot be sent.

gpib_poll(addr) — Returns the serial-poll status from the device with address addr .

Returns zero if command is sent successfully, Otherwise returns −1.

VME Hardware Functions

The type of data access and/or VME address modifier for the following functions can
be selected with the optional argument dmode as follows (if more than one option is
needed, make a comma-separated list in the single string argument):

"D8" — byte access

"D16" — short-word access

"D32" — long-word access, but only available with vme_get32() and
vme_put32() .

148 REFERENCE MANUAL

"DPRT" — use the address modifier appropriate for dual-port memory access,

on adapters that support it.

"amod=0x XX" — specify the hexadecimal value for the address modifier.

The default mode for the A16 access functions vme_get() and vme_put() is D8. The

default mode for the A32 access functions vme_get32() and vme_put32() is D32.

Not all VME adapters supported by spec support A32 access. There are currently no

functions for A24 access.

vme_get(addr [, dmode]) — Returns the data at addr in the 64K A16 address space.

vme_put(addr , data [, dmode]) — Writes data to addr in the 64K A16 address

space.

vme_get32(addr [, dmode]) — Returns the data at addr in the A32 address space.

vme_put32(addr , data [, dmode]) — Writes data to addr in the A32 address space.

vme_move(from , to [, cnt [, dmode]]) — Copies data between a spec data array
and VME A32 address space. One of the from and to arguments must be the
name of a spec data array while the other must be a VME address. If the op-
tional argument cnt is present, it designates how many data items (not bytes)
to copy. If missing or zero, the number of elements in the array is copied.

PC Port I/O

The port I/O functions allow arbitrary access to I/O ports on a PC computer, and
therefore, should be used with caution. To lesson the chance of writing data to a port
that might damage the computer or corrupt data, valid addresses for the following
functions must be explicitly assigned in the config file.

port_get(addr) — Reads one byte from the PC I/O port with the address addr . Re-

sets to command level if the port has not been selected in the config file. Oth-
erwise, returns the byte read.

port_getw(addr) — As above, but reads and returns a two-byte value.

port_put(addr , byte) — Writes the byte byte to the PC I/O port with the address

addr . Resets to command level if the port has not been selected for writing in
the config file. Otherwise, returns zero.

port_putw(addr , word) — As above, but writes the two-byte value word to the I/O

port.

REFERENCE MANUAL 149

CAMAC (IEEE-583) Hardware Functions

CAMAC functions are available if the appropriate hardware devices and software

drivers have been installed on the computer. The config file describes which CAMAC

hardware is installed. Refer to the Administrator’s Guide for information on the sup-

ported CAMAC controllers and how to install the corresponding drivers.

CAMAC modules are programmed with FNA codes where F is a function code, N is

the slot number and A is a subaddress number. Slot numbers are assigned in the

config file. Built-in code for the specialized CAMAC devices used for controlling mo-

tors, clocks and scalers is accessed through commands such as mcount() , tcount()
and move_all . However, simple devices, such as input or output registers, can be ac-

cessed directly by the user. These modules are also assigned slot numbers in the con-

fig file. They are also given device numbers, starting at 0, that are used in the follow-

ing functions.

ca_get(device , address) — The CAMAC module having device number device , as
set in the config file, is read using F = 0 and A = address with the 24-bit value
so obtained returned. Resets to command level if not configured for device .

ca_put(x , device , address) — This function is similar to ca_get() above, except
the 24-bit value x is written using F = 16. The actual number written is re-
turned, which is the 24-bit integer representation of x . Resets to command
level if not configured for device .

ca_fna(f , n, a [, v]) — Sends the arbitrary FNA command to the module in slot
n . If the datawa y command given by f is a write function, the 24-bit value to
be written is contained in v . If the datawa y command given by f is a read
command, the function returns the 24-bit value obtained from the module.
The user should avoid issuing commands that would cause a LAM and should
certainly avoid issuing commands to slots that are being used for motor or

counter control by spec’s internal hardware code.

ca_cntl(cmd, [, arg]) — Performs the selected CAMAC crate command according
to the parameter cmd, as follows:

"Z" or "init" — performs a crate initialize (reset).

"C" or "clear" — performs a crate clear.

"inhibit" — set crate inhibit if arg is 1 and clears crate inhibit if arg is 0.

During normal operation, you should not need to issue these commands. You
should probably issue a reconfig after sending a crate initialize or clear.
.

150 REFERENCE MANUAL

STANDARD MACRO GUIDE

152 STANDARD MACRO GUIDE

Introduction

The standard macros included with the spec distribution are an integral part of the

spec package. For some sites, the standard macros are sufficient for performing ex-

periments. For others, the standard macros provide a starting point for custom de-

velopment. This reference presents some of the standard macros, grouped by func-

tionality. For many macros, the complete definition is printed. At the end of this ref-

erence, the construction of the scan macros is discussed in depth.

The following files, found in the macros subdirectory of the distribution, contain the

definitions for all the macros in the standard library. If it is not obvious in which file

a particular macro is stored, you can always change to the macros directory and type

grep macro_name * , where grep is the standard UNIX file searching utility.

File Contents

count.mac Counting macros (ct , uct , count , show_cnts , ...).
cplot.mac The cplot_plot macro.
energy.mac For an energy-selecting monochromator (Escan , set_E ,

...).
file.mac The newfile macro.
getscan.mac The getscan macro.
hkl.mac General reciprocal space macros (br , mk, ca , wh, ...).
motor.mac Motor moving and status (mv, umv, wa, set , set_lm ,

...).
plot.mac Data plotting (plot , plot_res , rplot , splot , ansiplot ,

...).
powder.mac Powder-mode macros (setpowder , _pmove and _pcount).
region.mac Macros to define a series of scans(setreg and doreg).
scans.mac Basic scan macros (ascan , a2scan , hklscan , ...).
scans1.mac Scan helper macros (_head , _loop , setscans , ...).
start.mac The startup macro.

temper.mac Temperature control (settemp , measuretemp , te , ...).

util.mac Misc. utility macros (do , qdo , savmac , comment , u , help ,
...).

fivec.src Fivec-circle geometry macros.
fourc.src Four-circle geometry macros.
sixc.src Sixc-circle geometry macros.

spec.src Version for no diffractometer.

surf.src Special liquid surface diffractometer macros.
twoc.src Two-circle geometry macros.

STANDARD MACRO GUIDE 153

zaxis.src Z-axis geometry macros.

When installed, the .mac files above are combined into one file and placed (assuming

the default auxiliary file directory) in /usr/local/lib/spec.d/standard.mac. A file

formed from the first four letters of the geometry configuration contains the geometry

macros from one of the .src files above. For example, /usr/lib/spec.d/four.mac is cre-

ated for the four-circle geometry and contains the macros from fourc.src.

The macro definitions are the least stable part of the spec package. The macros are

easy to change — no recompilation of C code is necessary — and the intent of the de-

signers of the spec package was to put its flexibility in the macros. Thus, the defini-

tions presented below may differ with the macro definitions in your current version of

spec.

You may find the existing macros do not accomplish what you want. A simple proce-

dure for modifying a standard macro is to use the macro savmac to copy the definition

of the existing macro into a file. You then edit the macro definition in that file and
read it back in using the do macro. You can gather your customized macros into a file
named spec.mac in your current directory or into the file /usr/lib/spec.d/site.mac.
Both of these files are read every time you start spec, whether or not you are start-
ing fresh.

If you have made generally useful modifications to the standard macros, or if you
have developed your own macros, please send copies to Certified Scientific Software.
We include many user-contributed macros in each new release of the spec package.

Some Tips
The syntax rules for defining macros are given in the Reference Manual on page 101.
The suggestions that follow offer some additional guidance for writing macros that
will fit in well with the standard library.

When a macro requires arguments, it is a good idea to check that the right number of

arguments have been given, and if not, print a usage message and exit to command

level. The symbol $# will be set to the number of arguments when the macro is run.
For example,

def ascan ’
if ($# != 5) {

print "Usage: ascan motor start finish intervals time"
exit

}
...

’

154 STANDARD MACRO GUIDE

If an argument is supposed to be a motor number or mnemonic, use the _check0
macro before operating on the motor. The _check0 macro exits to command level if

the argument is not a valid mnemonic. For instance, to check the first argument of a

macro, use

_check0 "$1"

A mistyped mnemonic might otherwise become a variable with an arbitrary value

(zero for a new variable) resulting in an operation on the wrong motor (usually motor

zero).

It is good practice to refer to arguments just once when writing macros to avoid side

effects that occur, for example, if the macro is invoked as mymac i++ . Here the vari-

able i would be incremented each time $1 is used in the macro. In the scan macros,

the arguments are assigned to global variables just after the usage check:

def ascan ’
...
{ _ m1 = $1; _s1 = $2; _f1 = $3; _n1 = int($4); _ctime = $5 }
...

’

When a macro changes a parameter or mode that affects later data, it is a good idea
to note that change in the data file and on the printer. Macros such as comment ,
qcomment and gpset are available for that purpose.

If possible, declare local variables local to avoid conflicts with other variables, espe-
cially when macros are nested or parsed together.

Watch out for name conflicts when naming new macros and using variables. You can
prevent most conflicts by using the local keyword to explicitly declare local names
within a statement block. Names declared that way can be used as symbols within
the statement block even if they are already in use as macros. Otherwise, if you con-
struct commands using a variable name that is really a macro name, when that in-

tended variable is encountered, it will be replaced by the macro, making a mess of
things.

Note that several one-letter names such as d , h , p and l are already in use as macro

names. Don’t use these names as variables, unless they are declared local inside a

statement block. Typing lsdef ? will list all one letter macro names. Typing lsdef
_? will list all two letter macro names that begin with an underscore.

Command files that define macros often assign default values to related global vari-

ables. You should always check if these global variables have already had a value as-

signed before assigning default values. If the user had assigned a new value to a
variable, you do not want that assignment undone if the macro file is reread. The
built-in whatis() function can be used to see if a variable has been assigned a value

STANDARD MACRO GUIDE 155

(see page 82 for an explanation of the whatis() return values),

if ((whatis("DATAFILE")>>16)&0x0800) {
print "Warning: No open data file. Using \"/dev/null\".\n"
open(DATAFILE = "/dev/null")

}

When writing macros that move motors, be careful with the move_all command.

When moving motors, always do a waitmove and getangles first. Then assign new

values to A[] , and finally call move_all (or move_em).

When obtaining input from the user, the functions getval() and yesno() are useful.

For example,

_update = yesno("Show updated moving and counting", _update)
g_mode = getval("Geometry mode", g_mode)

results in the following screen output:

Show updated moving and counting (NO)?
Geometry mode (3)?

You can also use the input() built-in function to obtain user input. Remember,
though, that input() returns a string. If the string contains a valid number, the au-
tomatic string-to-number conversion will take place, if context requires it. However,
no expression simplification is done on the string, so a response of 2+2 will not have a
number value of 4 when returned by input() .

When using on() and off() to control output, do the operations on "tty" last. Since
"tty" is always turned back on if everything else is turned off, the commands

off("tty");on(PRINTER);print "hello world";on("tty");off(PRINTER)

will not have the desired effect. The first off() turns off everything, so "tty" is au-
tomatically turned back on, and the message goes to both PRINTERand "tty" .

Use existing UNIX utilities if they can be of help. For example, if you manipulate

UNIX file names in your macros you can use the return value of the test utility to
check for existence of a file. For example, the function unix("test -r $1") will re-
turn zero if the file specified by the argument exists and is readable.

156 STANDARD MACRO GUIDE

Utility Macros

UNIX Commands

These simple macros are for commonly used UNIX commands.

def cd ’chdir("$*")’ # Change working directory
def pwd ’print CWD’ # Print working directory
def u ’unix("$*")’ # Execute arbitrary shell commands
def ls ’unix("ls $*")’ # List files
def l ’unix("ls -l $*")’ # Long listing of files
def cat ’unix("cat $*")’ # Show file contents
def less ’unix("less $*")’ # Peruse files with handy utility
def mail ’unix(sprintf("%s $*", MAIL))’ # Send mail
def ed ’unix("ed $*")’ # I nvoke an editor
def ned ’unix("ned $*")’ # I nvoke another editor
def vi ’unix("vi $*")’ # I nvoke another editor

The u macro, without arguments, spawns an interactive subshell, using your SHELL

environment variable.

Note how the above macros supply parentheses and quotation marks around the ar-
guments, as required by the parser’s grammar rules.

Basic Aliases

The main purpose of these macros is to provide a shorthand way of typing some use-
ful commands.

def d ’print date()’ # Print current time and date
def p ’print’ # Shorthand for print
def h ’help’ # Shorthand for help, below
def hi ’history’ # Shorthand for history
def beep ’printf("\a")’ # Sound the bell
def cl ’tty_cntl("cl")’ # Clear the screen
def com ’comment "$*"’ # Shorthand for comment, below

def ond ’if (DATAFILE) # Send output to data file
{ o n(DATAFILE) }’

def offd ’if (DATAFILE) # Stop sending
{ o ff(DATAFILE)’

def onp ’if (PRINTER) # Send output to the printer
{ o n(PRINTER) }’

def offp ’if (PRINTER != "") # Stop sending
{ o ff(PRINTER) }’

def ont ’on("tty")’ # Send output to the terminal
def offt ’off("tty")’ # Stop sending

def fon ’if ($# == 1) on("$1")
else { print "Usage: fon filename"; on(); }’

def foff ’if ($# == 1) off("$1")

STANDARD MACRO GUIDE 157

else { print "Usage: foff filename";on(); }’

def waitall ’{ user_waitall; wait(0) }’ # Wait for async activity
def waitmove ’{ user_waitmove; wait(1) }’ # Wait for moving to end
def waitcount ’{ user_waitcount; wait(2) }’ # Wait for counting to end
def chk_move ’(wait(0x21) || USER_CHK_MOVE)’
def chk_count ’(wait(0x22) || USER_CHK_COUNT)’
def chk_acq ’(wait(0x24) || USER_CHK_ACQ)’
def w ’{ waitall; beep }’ # Wait, and be audible when done

Basic Utility Macros

These straightforward macros combine a number of built-in functions and commands

to provide a higher level of functionality with minimal input. First, here is their us-

age:

help [topic] # Display help files
config # Edit hardware configuration
onsim # Turn on simulate mode
offsim # Turn off simulate mode
debug [value] # Select debugging categories
bug # Mail a bug report
whats object # I dentify the object

gpset variable value # Comment if a variable has changed

Here are the definitions for some:

Examine help file, use default if no argument.
def help ’

if ($#)
gethelp("$1");

else {
local t
for (t="help";;)

if (gethelp(t) || (t = input("\nSubject? ")) == "")
break

}
’

158 STANDARD MACRO GUIDE

View (and modify), then reread configuration file.
Use -s flag if in simulate mode. Re-order motor numbers
with _assign. Check for monochromator mnemonics.
def config ’

wait(-1)
user_waitall
sync
unix(sprintf("%s/edconf %s %s/%s",\

SPECD, set_sim(-1)? "-s":"", SPECD, SPEC))
reconfig
user_config
_assign
_assign_mono

’
def user_config ’’

Turn simulate mode on. Comment on printer and file if changed.
def onsim ’{

local t

if (!(t = set_sim(1))) { qcomment "Simulate mode ON" }
printf("Simulate was %s, is now %s.\n", t? "on":"off",\

set_sim(-1)? "ON":"OFF")
}’
Turn simulate mode off.
def offsim ’{

local t

if (t = set_sim(0)) { qcomment "Simulate mode OFF" }
printf("Simulate was %s, is now %s.\n", t? "on":"off",\

set_sim(-1)? "ON":"OFF")
}’

Easy way to set the debug level.
+arg adds bits to DEBUG. -arg removes them.
def debug ’{

local t

if ($# == 0) {
gethelp("debug")
t = i nput(sprintf("\nDebug value (%d)? ", DEBUG))

} e lse
t = " $*"

if (index(t, "+")) DEBUG |= 0+t
else if (index(t, "-")) DEBUG &= ˜(0-t)
else DEBUG = 0+t

}’

STANDARD MACRO GUIDE 159

Send a bug report to the administrator.
def bug ’

print "The mail utility will be run for you. Describe your"
print "problem to the administrator. When you are done, type ˆD."
{

local s
s = u nix(sprintf("%s -s \"Bug from %s\" %s", MAIL, USER, ADMIN))
printf("Bug report %ssent to %s.", s? "not ":"", ADMIN)

}
’

Set something and comment if it has changed.
def gpset ’

if ($1 != $2) {
comment "$2 reset from %g to %g" "$2,$1"
$2 = $1

}
’

Reading From Command Files

do command_file # Run a command file
qdo command_file # Run a command file without echo
newmac # Reread standard command files

Since the do and qdo macros have nearly identical functionality, the commands for
both are placed in a single macro named _do . This macro implements special func-
tions, such as letting a dot stand for the previous command file or searching for a
command file first in the current directory and then in a special command file direc-
tory.

" do" a command file.
def do ’_do $* do’

Quietly "do" a command file.
def qdo ’_do $* qdo’

Run a command file. If not in current directory, look for
f ile in DO_DIR. Save file name in DOFILE so "do ." works.
def _do ’

if ($# != 2 || ("$2" != "do" && "$2" != "qdo")) {
print "Usage: do file"
print " qdo file"
exit

}
if ("$1" == "." && DOFILE == "") {

print "No previous do file."
exit

}

160 STANDARD MACRO GUIDE

if ("$1" != ".") {
DOFILE = "$1"
if (DO_DIR != "." && unix(sprintf("test -r %s", DOFILE))) {

local t

t=sprintf("%s/%s", DO_DIR, DOFILE)
if (!unix(sprintf("test -r %s", t)))

DOFILE = t
}

}
if (!unix(sprintf("test -r %s", DOFILE))) {

qcomment "do %s" DOFILE
$2file(DOFILE)

} e lse {
printf("Can\’t read command file \"%s\".\n", DOFILE)
exit

}
’

The newmac macro rereads the standard macro files that reside in SPECDthe auxiliary
file directory (usually /usr/lib/spec.d). Invoking newmac is useful if a new version of
the standard macros has been installed but you do not want to start fresh, or if you
have somehow corrupted the definition of a standard macro and want to get back the
original definition.

STANDARD MACRO GUIDE 161

Saving To Output Devices

comment format args # Send a comment to output devices
qcomment format args # Send comment to file and printer
prcmd command # Print the output of a command
savcmd command file # Save a command to a file
savmac macro_name file # Save a macro to a file

Print a comment on the screen, printer and data file.
def comment ’

printf("\n%s. $1.\n", date(), $2)
qcomment "$1" "$2"

’
Print a comment on the printer and data file.
def qcomment ’

if (PRINTER != "")
fprintf(PRINTER,"\n%s. $1.\n", date(), $2)

if (DATAFILE != "")
fprintf(DATAFILE, "#C %s. $1.\n", date(), $2)

’

Have output of any command sent to the printer.
Commands are all on one line to avoid outputting prompts.
def prcmd ’onp;offt;printf("\n%s\n","$*");ont;$*
offp’

Have output of any command sent to a file.
def savcmd ’

if ($# != 2) {
print "Usage: savcmd command filename"
exit

}
on("$2");offt;printf("\n%s\n","$1");ont;$1
close("$2")

’

Save a macro definition to a file.
def savmac ’

if ($# != 2) {
print "Usage: savmac macro_name filename"
exit

}
on("$2"); offt
prdef $1
ont; close("$2")

’

162 STANDARD MACRO GUIDE

Start-up Macros

These macros ask for all the initialization information that may be needed by the

other macros.

startup # Sets things up to start experiment
newsample # Gets title and data file for experiment
newfile [name [num]] # Sets up a data file
starttemp # Asks for temperature control parameters
setscans # Asks for scan options
setplot # Asks for plotting options
startgeo # Queries user for all geometry parameters

save [file] # Saves important variables to a file
savegeo # Used by "save", saves geometry parameters
saveusr # Used by "save", user defined

The startup macro prompts for values for a number of global variables and also in-

vokes all the other initialization macros, leading to more than a screenful of ques-
tions. You can, however, always jump back to command level by typing the interrupt
character (ˆC) if you do not need to change items at the bottom of the list. Be care-
ful, though, since some of the initialization macros, (setplot , for example) don’t
save the entered information until all their questions are answered.

def startup ’
printf("\n(newsample)")
newsample
{

local t
t = P RINTER != "" && PRINTER != "/dev/null"
if (yesno("\nUse a printer for scan output", t)) {

PRINTER = getval("Printer device",PRINTER)
if (index(PRINTER,"/")==0)

PRINTER = sprintf("/dev/%s",PRINTER)
if (open(PRINTER))

PRINTER = "/dev/null"
} e lse

PRINTER = "/dev/null"
}
if (substr(PRINTER,1,5) != "/dev/")

PRINTER = sprintf("/dev/%s",PRINTER)
if (open(PRINTER))

PRINTER = "/dev/null"
newfile
DO_DIR = getval("\nCommand file directory",DO_DIR)
COUNT = getval("Default count time for ct and uct",COUNT)
UPDATE = getval("Update interval for umv, uct, etc. in seconds",UPDATE)
if (whatis("starttemp")>>16)

printf("0arttemp)")
starttemp

STANDARD MACRO GUIDE 163

setscans
setplot
startgeo

’

In the standard distribution, starttemp has a null definition.

The newfile macro creates, opens or reopens standard spec data files. The filename

and scan number may be given as arguments. Otherwise, you are asked for the infor-

mation. If you have a directory named data in you current directory, and there are

no / characters in the file name you give, the data file will be placed in the data di-

rectory. If the file already exists, new scans will be appended to the file. The existing

file is not removed.

The startgeo macro is defined differently for various geometries, but should query

the user for values for all the relevant geometry parameters.

The save macro is not really an initialization macro, but it creates a file that can be

used for initialization. The purpose of the macro is to save all the important global
variables in a file that can be run as a command file at a later time to restore the val-
ues of those variables. For example, if the user anticipates starting fresh with a new
version of the software, having a file created by the save macro will simplify creating
a new program state.

Save current globals to a save file
def save ’{

local f

if ($# == 0)
f = g etval("File for saving globals", "saved")

else if ($# == 1)
f = " $1"

else {
print "Usage: save [filename]"
exit

}
unix(sprintf("if test -s %s ; then mv %s %s.bak ; fi", f, f, f))
on(f); offt
printf("PRINTER=\"%s\"\n",PRINTER)
savegeo
saveusr
ont; close(f)
qcomment "Globals saved in \"%s\"" "f"
printf("Type \"do %s\" to recover.\n", f)

}’

The macro savegeo saves all the geometry parameters for the particular configura-
tion. You can define the macro saveusr to save whatever else is desired.

164 STANDARD MACRO GUIDE

Motor Macros

mv motor pos # Move a motor
mvr motor pos # Move a motor, relatively
mvd motor dial_pos # Move a motor to a dial position
tw motor inc # Tweak a motor, interactively

umv motor pos # Move while updating screen
umvr motor pos # Move while updating screen

wa # Show positions of all motors
lm # Show limits of all motors
wm m1 m2 ... # Show positions and limits of motors
uwm m1 m2 ... # Show positions while motors are moving

set motor pos # Set user angle for a motor
set_dial motor pos # Set dial angle for a motor
set_lm motor low high # Set user limits for a motor

an tth_pos th_pos # Move two theta and theta
pl chi_pos phi_pos # Move chi and phi (four-circle)
uan tth_pos th_pos # Move while updating screen
upl chi_pos phi_pos # Move while updating screen

The following macro moves a single motor, adding a comment to the printer that the
motor was moved:

Move a single motor
def mv ’_mv $*; move_poll’
def umv ’_mv $*; _update1 $1’ # " update" version of mv
def _mv ’

if ($# != 2) {
print "Usage: mv motor position"
exit

}
_check0 "$1"
waitmove; getangles; A[$1]=$2
if (PRINTER != "")

fprintf(PRINTER,"\nmv $1 %g\n", A[$1])
move_em

’

In mv, as in all the macros that move motors, the move_em macro is invoked, rather

than the move_all command. Normally, move_em is defined as

def move_em ’
user_premove
move_all
user_postmove

One can define the user_premove and/or user_postmove macros to take into account
special conditions. For example, to check for limits that depend on the relative posi-

tion of motors, one could define user_premove as

STANDARD MACRO GUIDE 165

def user_premove ’
if (fabs(A[tth] - A[th]) > 10) {

print "Move exceeds Theta - Two Theta relative limit."
exit

}
move_all

’

The set macro changes the offset between user and dial units.

Define a new motor position
def set ’

if ($# != 2) {
print "Usage: set motor new_user_value"
exit

}
{

local old
_check0 "$1"
waitmove; getangles
old = A[$1]
if (chg_offset($1, $2))

exit
getangles
if (old != A[$1]) {

comment "%s reset from %g to %g" "motor_name($1), old, A[$1]"
} e lse

print "No change."
}

’

The set_dial macro changes the dial position of the motor, which means a change to
the contents of the motor controller register. set_dial refuses to set the dial beyond
the current software limits for the motor. set_dial also changes the offset to main-
tain the prior value of the user angle. These two macros document the change in the
data file and on the printer.

The set_lm macro converts the user-unit arguments to dial units for the call to

set_lim() .

166 STANDARD MACRO GUIDE

Change a motor limit
def set_lm ’

if ($# != 3) {
print "Usage: set_lm motor low high"
exit

}
{

_check0 "$1"
if (!set_lim($1, dial($1, $2), dial($1, $3))) {

onp
printf("\n%s limits set to %g %g (dial units).\n",\

motor_name($1), get_lim($1, -1), get_lim($1, +1))
offp

}
}

’

The macros in the above list that begin with a u continuously read motor positions

from the controller and show the positions on the screen. The frequency of screen up-
dates is set by the global variable UPDATE, which is used as an argument to the
sleep() function. Setting UPDATE=.25 places a 1/4 second pause between updates.
The umv macro first calls _mv and then calls the internal _update1 macro. The other
updated-move macros are defined similarly.

def umv _’mv $*; _update1 $1 ’ # " update" version of mv

Displays updated position of 1 motor while it is moving
def _update1 ’

if (chk_move)) {
printf("\n%10.9s\n", motor_name($1))
while (wait(0x22)) {

getangles
printf("%10.4f\r", A[$1])
sleep(UPDATE)

}
getangles
printf("%10.4f\n", A[$1])

}
’

The technique for displaying status information about all the motors is a little com-

plicated. spec places no restriction on what order the motors are assigned to the con-
troller, but does recognize that there is a preferred order for displaying motor infor-
mation. To this end, the macros use an array mA[] which contains reordered motor

numbers. The four-circle macro source file contains the following code, which is exe-

cuted when the command file is read and when the config macro is run.

STANDARD MACRO GUIDE 167

Conventionally, the first four motors are tth, th, chi, phi.
The following code guarantees this.
def _assign ’{

local i j
mA[0]=tth
mA[1]=th
mA[2]=chi
mA[3]=phi
for (i = 4, j = 0; i < MOTORS; j++) {

if (j == tth || j == th || j == chi || j == phi)
continue

mA[i++] = j
}

}’

Similar code is contained in the macro source files for the other geometries.

An internal macro named _mo_loop exists to loop through all the motors printing se-

lected fields. Its use is best illustrated by example. First here is its definition:

Looping routine used in many macros.
Normally k is set to MOTORS, but can be set to something else, e.g., 4
(Kludge with printf(" ") avoids auto linefeed on 80th column.)
def _mo_loop ’{

local s
for (j = i; j < i + 8 && j < k; j++)

if (motor_name(mA[j]) != "unused") {
s = s s printf("%$1", $2)
if (j < i + 7)

s = s " "
}

print s
}’

It is within this macro that motors named unused are not used in printing motor in-
formation.

The wa macro that displays information for all motors is typical of a macro that calls

the _mo_loop macro.

168 STANDARD MACRO GUIDE

Where - all motors
def wa ’

waitmove; get_angles
onp
printf("\nCurrent Positions (user, dial)\n")
{

local i j k
for (i = 0, k = MOTORS; i < k; i += 8) {

_mo_loop 9.9s "motor_name(mA[j])"
_mo_loop 9.9s "motor_mne(mA[j])"
_mo_loop 9.4f "A[mA[j]]"
_mo_loop 9.4f "dial(mA[j], A[mA[j]])"

}
}
offp

’

The first argument for _mo_loop is a printf() field specification, the second argu-

ment is the field value. The field values use the mA[] array to reorder the motor

numbers.

STANDARD MACRO GUIDE 169

Counting Macros

ct [time] # Count, then show_cnts
count [time] # Count for time
show_cnts # Count, then display results
uct [time] # Updated counting

When time is positive, counting is to seconds. When time is negative, counting is to

monitor counts. If the counting macros are invoked without an argument, the count

time used is that contained in the global variable COUNT.

Counting in spec combines timing generators and scalers. Three scaler channels are

normally used in the standard macros. The first channel takes an accurate clock in-

put (normally at 1 KHz), the second takes the monitor input, and the third takes the

detector.

The scaler channels identifying the various inputs are determined by the values of

the global constants, sec , mon and det . Their default values are 0, 1 and 2, respec-
tively, matching the recommended hardware cabling. If you do not connect your
counting sources to the default scaler channels, you must explicitly assign new values
to sec , mon and det for the standard counting macros to work properly.

The additional global variables MONand DET are then set to the channels that are to
be treated as the monitor and detector for particular scans, normally mon and det . If,
while doing a line-up scan of a motor on which the monitor is mounted, you would
want the monitor counts to be plotted as a function of the motor position, enter
DET=monbefore doing the scan. Do not forget to reassign DET=det at the end of the
scan.

The global variable COUNTis set to a default count time (normally 1 second). If the
macro ct is invoked without arguments, counting will last for the duration given by
COUNT.

A user calls "ct" to count for some interval and display results
def ct ’{

rdef cleanup \’
undef cleanup
onp; show_cnts; offp

\’
waitmove
count_em $*
waitcount
undef cleanup
onp; show_cnts; offp

}’

170 STANDARD MACRO GUIDE

" count" is the basic macro to count to monitor or to time.
It r uns the clock and reads the scalers.
def count ’{

waitmove
if ($1) for (;;) {

count_em $1
waitcount
get_counts
chk_beam

}
if (S[sec] && MON >= 0)

MON_RATE = S[MON]/S[sec]
}’
The macro "show_cnts" reads the scalers and displays the results.
def show_cnts ’{

local i

get_counts
printf("\n%s\n\n", date())
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12s = %g%s\n", cnt_name(i), S[i], \

i != s ec && S[sec]? sprintf(" (%g/s)", S[i] / S[sec]):"")
}’

Updated counting is done with the uct macro,

def uct ’{
waitmove
count_em $*
if (chk_count) {

local i
printf("\n")
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12.12s ",cnt_name(i))

printf("\n")
while (chk_count) {

get_counts
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12g ",S[i])

printf("\r")
sleep(UPDATE)

}
get_counts
for (i=0;i<COUNTERS;i++)

if (cnt_name(i) != "unused")
printf("%12g ",S[i])

printf("\n")
}

}’

STANDARD MACRO GUIDE 171

Plotting Macros

At present, spec’s plotting is done entirely at the macro level and does only character

plots on the screen and printer. Several screen plotting macros are defined for vari-

ous types of terminals.

setplot [mode] # Select plotting options
plot # Plot data on printer
rplot # Plot updated data at each point of scan
splot # Plot data on screen
pts # List current data on the screen
lp_plot # Primitive 132-column wide plot for printers

plot_res # Show results after scans
splot_res # Show results on screen plot
rplot_res # Show results on updated plot during scans

The setplot macro defines the plot macro, depending on your choices of plot modes.

The scan_plot macro is invoked within the looping portion of all the scans.

The setplot macro assigns values to the global variable, PLOT_MODE, according to the
values defined in the following table:

Bit Value Description

1 Do updated plotting during scans.
2 Do screen plot after scan.
4 Do printer plot after scan.
8 Scale x-axis of screen plots to fit width of scan.

16 Force y-axis minimum to be zero.
32 Use logarithmic y-axis.
64 Do simple background subtraction

128 Use high-resolution plotting device
256 With high-res, don’t use large dots

512 With high-res, don’t connect points with lines
1024 With high-res, don’t draw error bars

The scan_plot macro is called for each point of a scan, while plot is called at the

end of each scan.

The splot macro draws a screen plot. The rplot macro is called to redraw the plot
with minimal updating during data accumulation.

172 STANDARD MACRO GUIDE

Reciprocal Space Macros

The following macros are general and applicable to most geometry configurations.

Macros special to the four-circle geometry configuration are described in the Four-Cir-

cle Reference that follows this guide.

ca H K L # Display calculated positions for H K L
cal H K L # As above, but don’t reset positions
ci tth th chi phi # Display calculated H K L for angles
br H K L # Move to H K L
mk H K L # Move to H K L
ubr H K L # Move to H K L while updating screen
umk H K L # Move to H K L while updating screen
mi ALPHA BETA # Move to ALPHA BETA
wh # Display H, K, L, tth, th, chi, phi, etc.
pa # Display geometry parameters

The difference between ca and cal is that the first macro restores the A[] angles and
H, K and L to the current diffractometer position, while the second macro leaves them
at the calculated values.

There is no difference between the br and mk macros, except their names.

The ubr and umk macros continuously read the motor positions from the controller
and show the positions on the screen. The frequency of updates is set by the global
variable UPDATE.

Go to a B ragg position
def br ’_br $*; move_poll’
def _br ’

if ($# != 3) {
print "Usage: br H K L"
exit

}
waitmove; { H=$1; K=$2; L=$3 } getangles; calcA
onp; offt; printf("\nbr %g %g %g\n", H, K, L); offp; ont
move_em

’

STANDARD MACRO GUIDE 173

Calculate motor positions for a given H, K, and L
def cal ’

if ($# != 3) {
print "Usage: cal H K L"
exit

} ;
{H = $1; K = $2; L = $3 } calcA; calcHKL
onp
printf("\nCalculated Positions:\n")
_var
offp

’
As above but reset positions to diffractometer positions
def ca ’

if ($# != 3) {
print "Usage: ca H K L"
exit

} ;
{H = $1; K = $2; L = $3 } calcA; calcHKL
onp
printf("\nCalculated Positions:\n")
_var
offp
waitmove; getangles; calcHKL

’

Where - reciprocal and real space
def wh ’

waitmove; getangles; calcHKL
onp
_var
offp

’

A macro called by "wh", "ca" and "ci" to display important
geometry quantities. (Four-circle version.)
def _var ’

printf("\nH K L = %.5g %.5g %.5g\n", H, K, L)
printf("ALPHA = %.5g BETA = %.5g", ALPHA, BETA)
printf(" AZIMUTH = %.5g LAMBDA = %g\n\n", AZIMUTH, LAMBDA)
_mot 4

’

174 STANDARD MACRO GUIDE

Scan Macros

The following sections summarize the usage of the standard scans in spec. This dis-

cussion is followed by a description of macros to customize the scan output sent to the

printer and data file. Refer to page184 for a detailed discussion of a single-motor

scan.

All the scans use the same basic invocation syntax. For example, the single motor,

absolute-position scan is invoked as

ascan motor start finish intervals time

The range of a scan is specified by the starting position start , the final position fin-
ish and the number of intervals intervals of the scanned parameters. Thus

ascan tth 26 28 20 60

would start with the tth motor at 26°, and move the motor to 28°, using 20 intervals

of 0.1°. The total number of points scanned is one more than the number of intervals,
in this case, 21 points. The time per point time , if a positive number, indicates
counting to seconds. In the above example, each point takes 60 seconds. Using a
negative time indicates counting to monitor counts.

Scan Miscellany

resume # Restart an aborted scan
setscans # Set scan-mode options

If a scan is halted by typing the interrupt character (ˆC), or because of some other er-
ror such as hitting a motor limit, you can normally restart the scan by typing re-
sume . You must not have changed the value of any of the internal scan variables in
the meantime. If you use resume to continue a relative position scan, such as lup or

dscan , the scanned motors will not be returned to the center point when the scan

ends, as they otherwise would be.

You also have the option to control how the scan data is displayed on the screen as it
is taken. An option to the setscans macro allows the motor positions and scalers

contents to be displayed while they are changing during a scan. The rate of updates

is set by the UPDATEglobal variable, just as with the umv and uct macros. An option
to the setplot macro, presented earlier, allows real-time plots of the data points to
be displayed as they are measured.

Another option selected in the setscans macro lets you choose whether to do prescan

motor limit checks with reciprocal space scans. The purpose of these checks is to
avoid running into a software motor limit in the middle of a scan. For regular motor

STANDARD MACRO GUIDE 175

scans, the limit checks are done only at the scan endpoints. For reciprocal space

scans, the motor positions do not necessarily change monotonically and so the motor

limits must be checked at each scan point. Since this checking requires a time-con-

suming loop at the macro level, you may choose to disable the feature if you are confi-

dent your reciprocal space scans will not send a motor outside the ranges defined by

software limits.

Motor Scans

ascan motor start finish intervals time
a2scan m1 s1 f1 m2 s2 f2 intervals time
a3scan m1 s1 f1 m2 s2 f2 m3 s3 f3 intervals time
mesh m1 s1 f1 intervals1 m2 s2 f2 intervals2 time

lup motor start finish intervals time
dscan motor start finish intervals time
d2scan m1 s1 f1 m2 s2 f2 intervals time
d3scan m1 s1 f1 m2 s2 f2 m3 s3 f3 intervals time
th2th tth_start_rel tth_finish_rel intervals time

The argument motor (and m1, m2 and m3) is a motor number or mnemonic, such as
th , tth , chi , or phi . ascan , a2scan and a3scan are single-, two- and three-motor
absolute-position scans. mesh is a nested two-motor scan, where the first motor scans
through its range at each point of the second motor’s scan. lup (or equivalently
dscan), d2scan and d3scan are single- and two- and three-motor relative position
scans. The starting and finishing positions are given relative to the current position,
and the motors are returned to their starting position at the end of the scan. These
relative position scans are defined in terms of the absolute-position scans.

The th2th macro is a special case of the d2scan that will scan the tth and th motors,
with th moving half the range of tth . Its definition is,

def th2th ’
if ($# != 4) {

print "Usage: th2th tth_start_rel tth_finish_rel intervals time"
exit

}
d2scan tth $1 $2 th ($1)/2 ($2)/2 $3 $4

’

176 STANDARD MACRO GUIDE

Basic Reciprocal Space Scans

hscan start_H finish_H intervals time
kscan start_K finish_K intervals time
lscan start_L finish_L intervals time

hklscan s_H f_H s_K f_K s_L f_L intervals time
hklmesh Q1 s_Q1 f_Q1 intervals1 Q2 s_Q2 f_Q2 intervals2 time

The first three scans are special cases of hklscan , as in

def hscan ’
if ($# != 4) {

print "Usage: hscan start finish intervals time"
exit

}
waitall; getangles; calcHKL
hklscan $1 $2 K K L L $3 $4

’

hklmesh does a grid scan of two reciprocal coordinates, where Q1 and Q2 are literally
H, K or L , and Q1 ≠ Q2.

A waitmove , getangles and calcHKL are done at the start of the scan to obtain the
current diffractometer position to determine the values of the unspecified coordinates
in hscan , kscan , lscan and hklmesh .

Special Reciprocal Space Scans

klradial angle start_radius finish_radius intervals time [H=expr]
hlradial angle start_radius finish_radius intervals time [K=expr]
hkradial angle start_radius finish_radius intervals time [L=expr]

klcircle radius start_angle finish_angle intervals time [H=expr]
hlcircle radius start_angle finish_angle intervals time [K=expr]
hkcircle radius start_angle finish_angle intervals time [L=expr]

The first three scans trace a path that would form a radial cut if projected on to the

K-L, H-L or H-K planes at the specified angle in degrees from the positive K, H or H

axes, respectively. start_radius and finish_radius specify the radial distance
from the origin. The unscanned coordinate will be reevaluated at each point accord-
ing to the optional expression in the last argument, which can be a function of the

other coordinates, for example, H=L/300 . Otherwise, the unscanned coordinate will

remain constant.

The second three scans differ only in that they trace out a circular arc in the pro-
jected plane at the radius given by the first argument. start_angle and finish_an-
gle are the endpoints in degrees of the arc of the scan.

STANDARD MACRO GUIDE 177

Temperature Scans

Temperature scan
tscan start finish intervals time [sleep]

Delta temperature scan
dtscan start finish intervals time [sleep]

These two macros scan the temperature setpoint. The macro settemp (see the tem-

perature control macros, described below) is called to change the setpoint. A call of

the sleep() function is done after calling settemp , but before counting, if the op-

tional argument sleep is greater than zero.

Powder Mode

setpowder # Select "powder" mode
setpowder off # Turn "powder" mode off
setpowder motor full_width # Specify powder motor and width

Powder mode enables you to measure intensities while a motor is scanned through
some range. When turned on, powder mode affects all scans where motors are
moved. If invoked without arguments setpowder prompts for the powder motor and
for the full width of the rocking movement to take place at each point of the scan. In-
voked with the off argument, scans return to their normal mode.

Customizing Scan Output

To allow you to customize the scan headers and the information saved with each data
point, several macros are available for redefinition. Their default definitions are:

def Pheader ’’ # Printer header
def Fheader ’’ # File header
def Plabel ’""’ # Printer/Video column labels
def Pout ’""’ # Printer/Video output at each point
def Flabel ’""’ # File column labels
def Fout ’""’ # File output at each point

Four of these must be defined as strings — in the default case, null strings. Here are

examples of how these macros might save temperature set point and measurement

information on the output devices.

178 STANDARD MACRO GUIDE

def Pheader ’printf("\n Setpoint = %g (%g C)\n", TEMP_SP,DEGC_SP)’
def Fheader ’_cols++;printf("#X %gKohm (%gC)\n",TEMP_SP,DEGC_SP)’
def Plabel ’sprintf("%7.7s %7.7s ","T-set","T-degC")’
def Pout ’sprintf("%7.5g %7.5g ",TEMP_SP,DEGC)’
def Flabel ’"DegC "’
def Fout ’sprintf("%g ",DEGC)’

The Pheader and Fheader macros must print newline-terminated lines. More than

one line is permitted, however. Besides adding scan header information to the data

file, Fheader also adjusts the value of the global variable _cols , which is used to in-

dicate the number of data columns in the data file. In the example shown, the Fla-
bel and Fout definitions add one column to the data file, so _cols is incremented by

one. The Plabel and Pout macros add columns to the printer (and screen) output.

The columns in Flabel should be separated by double spaces (the data file conven-

tion). The columns in the other headers should be separated by single spaces. In

each case, the spaces come after the label.

The Ftail macro is available for adding scan results to the data file at the conclusion
of a scan. By default Ftail is defined as nothing,

def Ftail ’’ # File tail

You might define it to be

def Ftail ’printf("#R %d %g %g %g %g %g %g\n", \
SCAN_N, pl_xMAX, pl_MAX, pl_FWHM, pl_CWHM, pl_COM, pl_SUM);’

where the values being printed are from the pl_anal() function described on page
##. The #R characters begin the data file control line for scan results.

Temperature Control Macros

te # Read or set the temperature
settemp # Set the temperature
measuretemp # Measure the temperature
showtemp # Show temperature parameters
teramp # Ramp the temperature

Methods for handling temperature control and other experimental parameters are

likely to vary greatly from lab to lab and experiment to experiment. You may be able
to modify these standard macros to suit your specific needs.

The temperature control model assumed by these macros uses two independent in-

struments: one instrument to control the temperature and one instrument to mea-

sure the temperature. The following global variables are used by the macros:

STANDARD MACRO GUIDE 179

TEMP_SP The set point of the controller in ohms, volts, etc.

T_LO_SP The lower limit for the controller set point.

T_HI_SP The upper limit for the controller set point.

DEGC_SP The temperature from which the set point is derived.

TEMP_CS The value of the temperature sensor in ohms, volts, etc.

DEGC The measured temperature.

The macro below displays the current set point and measured temperature.

Display temperature parameters
def showtemp ’

measuretemp
printf("Temperature Setpoint = %g (%gC)\n",TEMP_SP,DEGC_SP)
printf(" Measured = %g (%gC)\n",TEMP_CS,DEGC)

’

You must supply the macro measuretemp . It should read TEMP_CSfrom the tempera-

ture sensor and convert it to DEGC. Sample measuretemp macros are given below.

The te macro is the one you would use most often to display or set the temperature
set point.

Simple read or set temperature
def te ’

if ($# == 1) {
settemp $1
qcomment "Temperature Setpoint at %g" "TEMP_SP"

}
onp; showtemp; offp

’

If invoked without arguments, it simply displays the current temperature parame-
ters. Otherwise it invokes the settemp macro. The settemp macro checks its argu-
ment against the set point limits and then calls the _settemp macro, which you must
supply.

Assign the temperature setpoint
def settemp ’

if ($# != 1) {
print "Usage: settemp set_point"
exit

} e lse {
local _1
_1 = $1
if (_1 < T_LO_SP || _1 > T_HI_SP) {

printf("Temp limits are %g to %g.\n",T_LO_SP,T_HI_SP)
exit

}
TEMP_SP = _1
_settemp

180 STANDARD MACRO GUIDE

}
’

Here are examples of _settemp macros from several installations (the symbol _1 is

defined in settemp):

Write setpoint to a Lakeshore 82C Controller on GPIB bus
def _settemp ’

gpib_put(12, sprintf("S%6.4f", _1))
’
Write setpoint to home-made GPIB device used at MIT
def _settemp ’{

local _s
_s = int(32767*_1/10)
gpib_put(4, sprintf("%c%c%c%c\160\200",\

0x80|(_s &0xF), 0x90|((_s>>4)&0xF),\
0xA0|((_s>>8)&0xF), 0xB0|((_s>>12)&0xF)))

}’
Write setpoint to a home-made device used with CAMAC at Harvard
def _settemp ’

ca_put(bcd(10000*_1), 0, 0)
’

Here are examples of different measuretemp macros:

Read parameters from a Lakeshore 82C Controller on GPIB bus
def measuretemp ’{

local _s
gpib_put(12,"W0")
_s=gpib_get(12)
TEMP_SS=substr(_s,1,6)
TEMP_CS=substr(_s,9,6)*100
RtoT_0 DEGC TEMP_CS
TEMP_SP=substr(_s,17,6)
RtoT_0 DEGC_SP TEMP_SP

}’
Read setpoint from CAMAC and temperature from GPIB device
def measuretemp ’

TEMP_CS = gpib_get(1)/1000
RtoT_0 DEGC TEMP_CS
TEMP_SP = dcb(ca_get(0, 0))/10000
RtoT_0 DEGC_SP TEMP_SP

}’

Keep in mind that measuretemp is also called at each iteration of the standard scan
macros.

STANDARD MACRO GUIDE 181

The macro RtoT_0 , used above, is one of several in the standard package that convert

between degrees C and kilohms for common thermistors:

Temperature to kohms
def TtoR_0 ’

local _k # YSI 44011 (100kohm @ 25C) 20 to 120 C
$1 = exp(-11.2942 +5.3483e3 /(_k = ($2) + 273.15)\

-1.42016e5 /(_k*_k) -1.172e7 /(_k*_k*_k))
’
Kohms to temperature
def RtoT_0 ’

local _l # YSI 44011 (100kohm @ 25C) 20 to 120 C
$1 = (1/(+2.2764e-3 +2.20116e-4 *(_l = log($2))\

+2.61027e-6 *_l*_l +9.02451e-8 *_l*_l*_l) - 273.15)
’

(The four parameters in each equation were obtained by fitting a table of values sup-

plied by the manufacturer of the thermistors. No guarantees are made about the ac-

curacy of the fitted parameters.)

The following macro will gradually change (or ramp) a temperature controller to a
new set point. If the ramp time is greater than 500 seconds, the temperature is
changed every 10 seconds, otherwise the temperature is changed every 2 seconds.

Read or set or ramp the temperature
def teramp ’{

if ($# == 1) {
te $1

} e lse if ($# == 2) {
local _i _s1 _f1 _d1 _rtime _stime
_f1 = $1
_rtime = $2
_stime = _rtime < 500? 2:10
_s1 = TEMP_SP
_d1 = (_f1 - _s1) / _rtime * _stime
qcomment "Ramp Temp Setpoint from %g to %g" "_s1,_f1"
for (_i=0; _i<=_rtime; _i+=_stime, _s1 += _d1) {

settemp _s1
measuretemp
printf("Set=%7.4f Meas=%7.4fC\r",TEMP_SP,DEGC)
sleep(_stime)

}
showtemp

} e lse {
print "Usage: teramp set_point or teramp set_point time"
exit

}
}’

182 STANDARD MACRO GUIDE

Printer Initialization Macros

These macros send out the particular character sequences that put various printers

into compressed mode to fit 132 columns of text on 8½" wide paper.

Put DecWriter into compressed mode
def initdw ’onp; offt; printf("\033[4w"); offp; ont’

Put Epson printer into compressed mode
def initfx ’onp; offt; printf("\017"); offp; ont’

Put Okidata printer into compressed mode
def initoki ’onp; offt; printf("\035"); offp; ont’

NEC P6/P7 printer, put into compressed mode
def initnec ’onp; offt; printf("\033!\004"); offp; ont’

STANDARD MACRO GUIDE 183

The Scan Macros In Detail

All the scan macros in the standard package share a similar structure. To keep the

format of the output sent to the data file, printer and screen consistent, common

parts of each scan are defined as macros that are called by all the scans. For exam-

ple, the scan_head macro is called by each scan to write scan headers on all the out-

put files and devices. Certain macros are shared by all the scans for another reason.

Special operating modes or options are implemented by redefining shared macros.

For example, the scan_move macro, called within the looping portion of the scans, is

normally defined as _move , which is:

def _move ’move_em; waitmove; getangles; calcHKL’

In powder mode, scan_move is defined as _pmove , a slightly more complicated macro,

designed to move the designated powder averaging motor some width on alternating

sides of the center trajectory of the scan,

def _pmove ’
if (_stype&2)

_cp = A[_pmot]
A[_pmot] = _cp + _pwid/2
_pwid = -_pwid
move_em; waitmove; getangles; A[_pmot] = _cp; calcHKL

’

The following paragraphs explain in detail the construction of the scan macros, using
the single-motor scan, ascan , as an example. Here is its definition:

def ascan ’
if ($# != 5) {

print "Usage: ascan motor start finish intervals time"
exit

}
_check0 "$1"
{ _ m1 = $1; _s1 = $2; _f1 = $3; _n1 = int($4); _ctime = $5 }

if (_n1 <= 0) {
print "Intervals <= 0"
exit

}

_bad_lim = 0
_chk_lim _m1 _s1
_chk_lim _m1 _f1
if (_bad_lim) exit

HEADING = sprintf("ascan %s %g %g %g %g","$1",$2,$3,$4,$5)
_d1 = (_f1 - _s1) / _n1++
_cols=4

184 STANDARD MACRO GUIDE

X_L = motor_name(_m1)
_sx = _s1 ; _fx = _f1
_stype = 1|(1<<8)
FPRNT=sprintf("%s H K L", motor_name(_m1))
PPRNT=sprintf("%8.8s", motor_name(_m1))
VPRNT=sprintf("%9.9s", motor_name(_m1))
scan_head
def _scan_on \’

for (; NPTS < _n1; NPTS++) {
A[_m1] = _s1 + NPTS * _d1
scan_move
FPRNT=sprintf("%g %g %g %g",A[_m1],H,K,L)
PPRNT=sprintf("%8.4f",A[_m1])
VPRNT=sprintf("%9.4f",A[_m1])
scan_loop
pl_put(NPTS, A[_m1], S[DET])
scan_plot

}
scan_tail

\’
_scan_on

’

In ascan , as in all scans, the first thing to do is to check the number of arguments,
$# , and if incorrect, print a usage message:

if ($# != 5) {
print "Usage: ascan motor start finish intervals time"
exit

}

Next, the _check0 macro is called,

_check0 "$1"

as it is whenever a motor mnemonic is used as an argument in the standard macros.
The macro checks its argument against all valid motor mnemonics and motor num-

bers. The purpose is to prevent unintentionally sending motors into motion if the
user mistypes a mnemonic. The definition of _check0 is

STANDARD MACRO GUIDE 185

def _check0 ’{
local _i

for (_i = 0; _i <= MOTORS; _i++)
if (_i == MOTORS) {

print "Invalid motor name: $1"
exit

} e lse if ($1 == _i) {
if ("$1" != motor_mne(_i) && "$1" != _i) {

print "Invalid motor name: $1"
exit

} e lse
break

}
’

Next in ascan , the global variables used in the scan are initialized from the argu-

ments.

{ _ m1 = $1; _s1 = $2; _f1 = $3; _n1 = int($4); _ctime = $5 }

The global variables being assigned are shared by all the scans.

Next in ascan , a check is made to ensure the number of intervals is positive.

if (_n1 <= 0) {
print "Intervals <= 0"
exit

}

The next four lines do a motor limit check before the start of the scan.

_bad_lim = 0
_chk_lim _m1 _s1
_chk_lim _m1 _f1
if (_bad_lim) exit

The _chk_lim macro sets the flag _bad_lim if the position given by the second argu-
ment is outside the limits of the motor given by the first argument.

def _chk_lim ’{
local _u _t

if ((_u = dial($1, $2)) < (_t = get_lim($1, -1))) {
printf("%s will hit low limit at %g.\n",motor_name($1),_t)
_bad_lim++

} e lse if (_u > (_t = get_lim($1, 1))) {
printf("%s will hit high limit at %g.\n",motor_name($1),_t)
_bad_lim++

}
}’

The prescan limit check is straightforward for simple motor scans. For reciprocal

186 STANDARD MACRO GUIDE

space scans, the limit check must loop through all the points of the scan since the mo-

tor positions are not necessarily monotonic functions of the scan variables.

Next in ascan , the global variable HEADINGis initialized.

HEADING = sprintf("ascan %s %g %g %g %g","$1",$2,$3,$4,$5)

It is used in the scan headers written to the file, screen and printer, and records the

arguments with which the scan was invoked.

Next, some global scan variables are initialized.

_d1 = (_f1 - _s1) / _n1++
_cols=4
X_L = motor_name(_m1)
_sx = _s1 ; _fx = _f1
_stype = 1|(1<<8)

The _d1 variable is set to the step size for the scan. The number of intervals in _n1 is

incremented so its value will be the actual number of points. The _cols global vari-
able is set to the number of extra columns this scan will use in the data file. Here it
is four, for the motor position and values of H, K and L at each point.

X_L is set to the x-axis label to use on the plot of the scan. The globals _sx and _fx
are set to the endpoints of the x axis to be used in plotting the data on the screen dur-
ing the scan.

The variable _stype is treated as a two byte integer and holds a code representing
the current scan type. The low-order byte is a bit flag, while the high order byte con-
tains a number value. The expression 1|(1<<8) use the bitwise-or and the bitwise-
shift operators to put values in each byte. Currently, the following codes are used:

Code Type Of Scan High-Order Byte

1 motor number of motors
2 HKL nothing
4 temperature nothing

Next in ascan , the global variables FPRNT, PPRNTand VPRNTare given string values
to be used for file, printer and video-screen column labels particular to this scan.

FPRNT=sprintf("%s H K L", motor_name(_m1))
PPRNT=sprintf("%8.8s", motor_name(_m1))
VPRNT=sprintf("%9.9s", motor_name(_m1))

Each label contains the name of the motor being scanned, although printed with a
different field width. Different widths are used to fit the widths and number of fields

on the target devices. A challenge in constructing the scan macros is to fit all the de-

sired columns of information within a single line. All the scans must limit the line

STANDARD MACRO GUIDE 187

length to 132 columns for output sent to the printer. (80-column printers must be op-

erated in compressed mode to make their carriages effectively 132 columns wide.)

The video screen is 80 columns wide. For the data file, there is no restriction on

width. Also for the data file, no attempt is made to line up items in columns.

Next in ascan is the scan_head macro, called to do the general initialization. All

scan macros call scan_head . The default definition of scan_head is

def scan_head ’_head’

where _head is defined as,

def _head ’
_scan_time
waitall; get_angles; calcHKL
NPTS = T_AV = MT_AV = 0
DATE = date()
TIME = TIME_END = time()
_cp = A[_pmot]
rdef cleanup "_scanabort"

DATA FILE HEADER
ond; offt
printf("\n#S %d %s\n#D %s\n",++SCAN_N,HEADING,DATE)
if (_ctime < 0)

printf("#M %g (%s)\n", -_ctime, S_NA[MON])
else

printf("#T %g (%s)\n", _ctime, S_NA[sec])
printf("#G")
for (_i=0; _i<NPARAM; _i++) printf(" %g", G[_i])
printf("\n")
printf("#Q %g %g %g\n", H, K, L)
{

local _i _j _k
for (_i = 0, _k = MOTORS; _i < _k; _i += 8) {

printf("#P%d ", _i/8)
_mo_loop .6g "A[mA[_j]]"

}
}
Fheader
printf("#N %d\n", _cols + 3)
printf("#L %s%s Epoch %s %s\n",FPRNT,Flabel,\

S_NA[_ctime < 0? sec:MON],S_NA[DET])
offd

PRINTER HEADER
onp; offt
printf("\n\f\nScan %3d %s file = %s %s user = %s\n%s\n\n",\

SCAN_N,DATE,DATAFILE,TITLE,USER,HEADING)
{

local _i _j _k
for (_i = 0, _k = MOTORS; _i < _k; _i += 8) {

188 STANDARD MACRO GUIDE

printf(" ")
_mo_loop 9.9s "motor_name(mA[_j])"
printf(" ")
_mo_loop 9.6g "A[mA[_j]]"

}
}
Pheader
printf("\n # %11.9s %11.9s %11.9s %8.8s %8.8s %8.8s %s%s\n",\

"H","K","L",S_NA[sec],S_NA[MON],S_NA[DET],PPRNT,Plabel)
offp

TTY HEADER
ont
printf("\nScan %3d %s file = %s %s user = %s\n%s\n\n",\

SCAN_N,DATE,DATAFILE,TITLE,USER,HEADING)
printf(" # %s %8.8s %8.8s %10.10s%s\n",\

VPRNT,S_NA[DET],S_NA[MON],S_NA[sec],Plabel)
’

The commands at the beginning of _head ,

waitall; get_angles; calcHKL

insure the motors are stopped and positions current before proceeding. Next, _head
initializes some variables. NPTSis the loop variable in the scans that will run from 0
to _n1 . T_AV and MT_AVmaintain the average temperature (from the global variable
DEGC) and the average monitor counts or time per point during the scan. DATEand
TIME are set to the current date and time. TIME_END is updated at each point with
the current time. The _cp variable is used in powder mode and is set to the center
position of the powder-average motor.

Next in the header macro, the real space motor positions and the reciprocal-space po-
sition are made current with getangles and calcHKL . The cleanup macro is defined
to be the standard macro _scanabort . The macro named cleanup is special as spec
automatically invokes that macro when a user types ˆC or on any other error, such as
hitting motor limits, trying to go to an unreachable position or encountering a syntax

error in a macro. The definition of _scanabort is,

def _scanabort ’
_cleanup2
_cleanup3
comment "Scan aborted after %g points" NPTS
sync
undef cleanup

’

The _cleanup2 macro is defined for delta scans to move motors back to their starting

positions. The _cleanup3 macro is available to users for defining some kind of pri-
vate clean up actions.

STANDARD MACRO GUIDE 189

Finally, the headers are written to the file, printer and screen in turn. Included in

the headers are the user-defined Fheader , Flabel , Pheader and Plabel .

Returning back to ascan , the next part of the macro is the loop:

def _scan_on \’
for (; NPTS < _n1; NPTS++) {

A[_m1] = _s1 + NPTS * _d1
scan_move
FPRNT=sprintf("%g %g %g %g",A[_m1],H,K,L)
PPRNT=sprintf("%8.4f",A[_m1])
VPRNT=sprintf("%9.4f",A[_m1])
scan_loop
pl_put(NPTS, A[_m1], S[DET])
scan_plot

}
scan_tail

\’
_scan_on

The loop is implemented as a macro to enable the scan to be continued with the re-
sume macro. The relevant global variables are initialized outside the loop, so that in-
voking _scan_on continues the scan where it had left off when interrupted. Here is
the resume macro.

def resume ’
if (NPTS >= (index(HEADING, "mesh")? _n1*_n2 : _n1)) {

print "Last scan appears to be finished."
exit

}
def cleanup "_scanabort"
comment "Scan continued"
_scan_on

’

The scan_move , scan_loop and scan_plot macros are invoked by all the scans. In
the loop, the motor array A[] is set to the target position for the scanned motor and

the motor is moved using the scan_move macro, normally defined as _move :

def _move ’move_em; waitmove; getangles; calcHKL’

String variables are then assigned to values that will be written to the output devices
using the scan_loop macro. The scan_loop macro is generally defined as _loop
which has the definition,

190 STANDARD MACRO GUIDE

The loop macro, called by all the scans at each iteration
def _loop ’

scan_count _ctime
measuretemp
calcHKL
z = _ ctime < 0? S[sec]/1000:S[MON]
T_AV += DEGC; MT_AV += z
printf("%3d %s %8.0f %8.0f %10.6g%s\n",\

NPTS,VPRNT,S[DET],S[MON],S[sec]/1000,Pout)
onp; offt
printf("%3d %11.5g %11.5g %11.5g %8.6g %8.0f %8.0f %s%s\n",\

NPTS,H,K,L,S[sec]/1000,S[MON],S[DET],PPRNT,Pout)
offp; ond; offt
printf("%s%s %d %g %g\n",FPRNT,Fout,(TIME_END=time())-EPOCH,z,S[DET])
offd; ont

’

This macro first counts by calling the scan_count macro, normally defined as

_count , which is, in turn, defined as count . (In powder mode, or when using up-

dated counting during scans, _count is defined differently.) The _loop macro then
calls measuretemp . With this macro, you can have any per-point action done, not lim-
ited to, nor necessarily even including, measuring the temperature of the sample.
Next in _loop the sums for computing the average temperature and monitor count
rate are adjusted. Finally the video screen, printer and data file are updated with
the results of the current iteration.

The last thing in _scan_on is a call to scan_tail , normally defined as _tail :

The tail macro, called by all the scans when they complete
def _tail ’

undef cleanup
TIME_END = time()
if (!(_stype&8)) {

ond; offt
Ftail
offd; ont
plot

}
’

This macro removes the definition of cleanup , since it is no longer needed, and if not
a mesh scan, adds the user defined results to the file and calls the plot macro.

STANDARD MACRO GUIDE 191

Standard Data-File Format

The data files created by the macros have a simple format. The files are ASCII. Con-

trol lines in the file begin with a # followed by a upper-case letter. Other lines are

blank or contain scan data.

The control conventions are:

Code Parameters Description

#C comment Comments inserted by many of the standard macros.

#D date A string representing the current date, in the format

Wed May 4 23:59:49 1988 .

#E seconds The UNIX epoch at the time the file was created.

#F filename The name by which the file was created.

#G1 parameters Array G[] (geometry mode, sector, etc.)

#G2 parameters Array U[] (lattice constants, orientation reflections)
#G3 parameters Array UB[] (orientation matrix)
#G4 parameters Array Q[] (LAMBDA, frozen angles, cut points, etc.)
#I factor A normalizing factor to apply to the data.
#j N mnemonics Counter mnemonics (N = 0,1,2,... eight per row)
#J N names Counter names (N = 0,1,2,... eight per row, each sep-

arated by two spaces)
#L labels Labels for the data columns (each separated by two

spaces)
#M counts If counting to monitor counts, the number of counts.
#N num [num2] The number of columns of data that follow (num2

sets per row)
#oN mnemonics Motor mnemonics (N = 0,1,2,... eight per row)
#ON names Motor names (N = 0,1,2,... eight per row, each sepa-

rated by two spaces)
#PN positions Postions of motors corresponding to #O/#o above.

#Q H K L A reciprocal space position.

#R results User-defined results from a scan.
#S number A new scan having scan number number follows,

normally preceded by a blank line.

#T seconds If counting to time, the time used.

#U Reserved for user.
#X setpoint The temperature setpoint.
#@MCA fmt This scan contains MCA data (array_dump() format,

as in "16C")

@A data MCA data formatted as above

192 STANDARD MACRO GUIDE

#@CALIB a b c Coefficients for x[i] = a + b i + c i 2 for MCA data.

#@CHANN n f l r MCA channel information (number_saved,

first_saved, last_saved, reduction coef)

#@CTIME p l r MCA count times (preset_time, elapsed_live_time, e-

lapsed_real_time)

#@ROI n f l MCA ROI channel information (ROI_name,

first_chan, last_chan)

STANDARD MACRO GUIDE 193

194 STANDARD MACRO GUIDE

FOUR-CIRCLE REFERENCE

196 FOUR-CIRCLE REFERENCE

Introduction

When invoked by the name fourc, spec runs with code appropriate for a four-circle

diffractometer. This section of the Reference Manual focuses on the features of spec
unique to the fourc version.

The four circles of the standard four-circle diffractometer are: 2θ, the angle through

which the beam is scattered, and θ, χ, and φ, the three Euler angles, which orient the

sample. Of these three, θ is the outermost circle with its axis of rotation coincident

with that of 2θ. The χ circle is mounted on the θ circle, with its axis of rotation per-

pendicular to the θ axis. The φ circle is mounted on the χ circle such that its axis of

rotation lies in the plane of the χ circle.

From the keyboard and on the screen, the angles are named tth , th , chi and phi ,

respectively, and conventionally referred to in that order. For fourc to work properly,

angles with these names must be configured.

In describing the operation of a four-circle diffractometer, it is convenient to consider
three coordinate systems: 1) a frame fixed in the laboratory, 2) a frame fixed on the
spectrometer and 3) the natural axes of the sample. Note that fourc uses right-
handed coordinate systems. All rotations are right-handed except for the χ rotation.

(1) The x-y plane of the laboratory coordinate system is called the scattering
plane and contains the sample and the points reached by the detector as it ro-
tates on the 2θ arm. A counter-clockwise rotation of the 2θ axis corresponds
to increasing 2θ, with the 2θ rotation axis defining the positive z direction in
the laboratory. The zero of 2θ is defined as the setting at which the unde-
flected X-ray beam hits the detector.

The positive y axis is along the line from the sample to the X-ray source. The
position at which θ rotates the χ circle to put the χ rotation axis along the y

axis defines the zero of θ. A clockwise rotation of χ corresponds to increasing χ.

The zero of χ is the position which puts the φ rotation axis along the positive z

axis. The positive x axis direction is determined by the cross product of the y

and z axes (x̂=ŷ×ẑ), which completes the definition of the right-handed coordi-
nate system.

It is important to note that the zeroes of 2θ, θ and χ and the direction of posi-
tive rotation of all the circles must be set as described above and cannot be

freely redefined.

FOUR-CIRCLE REFERENCE 197

(2) The spectrometer coordinate system is defined as a right-handed system fixed

on the φ rotation stage at the sample position such the coordinate system is

aligned with the laboratory coordinate system when all four spectrometer an-

gles are zero. This definition determines the zero of φ.

(3) The third coordinate system is aligned with specific directions in the sample.

A common and useful example are coordinates defined as the lattice vectors of

a crystalline sample. When placing a sample in the spectrometer, it is un-

likely that its axes will line up with the spectrometer axes. Nevertheless,

fourc allows the sample orientation to be fully specified by finding the angles

at which two Bragg peaks are detected and giving the corresponding recipro-

cal lattice indices. This process is described fully in the section on the Orien-

tation Matrix.

To orient a sample so as to measure the intensity at a particular reciprocal lattice po-

sition requires that the reciprocal lattice vector of interest is aligned with the scatter-

ing vector of the spectrometer. Since any rotation about the scattering vector does
not change the diffraction condition, there is a high degree of degeneracy that must
be resolved in order for fourc to determine unique angle settings. How the degener-
acy is lifted described in the section on Four-Circle Modes.

Dif fractometer Alignment

This section presents a guide on how to set up a four-circle spectrometer. This sum-
mary applies whether the scattering plane is horizontal or vertical.

The first step, which should need only be done the first time fourc is used with the
diffractometer, is to ensure each diffractometer motor is set up with the correct name,
mnemonic, rotation sense, steps-per-degree, etc. The config macro is generally used
for this purpose. For stepping motors, the rotation sense of an axis depends on the
details of the motor controller and cable connections. If the rotation sense isn’t as de-

scribed in the Introduction, change the sign_of_user_×_dial parameter in the motor

configuration file.

For each motor, fourc keeps track of a both a dial and a user position. The dial posi-
tion is meant to agree with the readout of the physical dial on the spectrometer. The

value and the sign of the steps_per_unit parameter should be chosen so that the dial

position and its direction in the computer agree with the physical dial reading. Use
the set_dial macro to set the dial positions. The user positions should correspond to
the underlying “true” orientation angles of the spectrometer that satisfy the con-

straints given above. Use the set macro to set the user positions.

198 FOUR-CIRCLE REFERENCE

Once properly configured, diffractometer alignment proceeds as follows.

(1) Arrange for the X-ray beam to go through the center of rotation. Generally,

the center of rotation is found with a pin and a telescope.

(2) Arrange for the X-ray beam to be perpendicular to the 2θ axis. This condition

is typically verifyed by comparing X-ray burns made on X-ray sensitive paper

with 2θ near the undeflected beam direction and with 2θ offset by 180°.

(3) Set 2θ so that the undeflected X-ray beam direction corresponds to the zero of

2θ.

(4) Align the χ rotation axis with the laboratory y axis to set the zero of θ.

(5) Align the φ rotation axis with the θ rotation axis to set the zero of χ.

One way to do (4) and (5) is as follows:

(i) Mount a Si(111) wafer so that the (111) direction is (approximately) along the
φ axis.

(ii) Find the (111) Bragg reflection. Note the values of θ and χ. Call them θ
1

and

χ
1
.

(iii) Rotate φ by 180°.

(iv) Find the Bragg reflection again. Note thes values of θ and χ. Call them θ
2

and χ
2
.

(v) ½ (χ
1

+ χ
2
) corresponds to χ = 90° in a correctly aligned spectrometer; ½ (θ

1
+ θ

2
)

corresponds to θ = ½ 2θ.

The Huber four-circle diffractometer is an example of an instrument that works with

fourc.1 Another common spectrometer configuration has two crossed ± 20° tilt stages
on top of full θ and 2θ circles. This configuration is compatible with the four-circle

code if the tilt stage immediately adjacent to the θ circle is χ and the other is φ. When

the first tilt stage is zero, χ is at 90°.

1The four-circle Huber has dial readings with all right-handed rotations, so the χ circle should have dial
readings and user readings that are in opposite senses. If the θ circle is offset by 180° then the dial readings and
the user readings of all angles can have the same sense.

FOUR-CIRCLE REFERENCE 199

Orientation Matrix

Angle calculations for the four-circle diffractometer are described in detail in Busing

and Levy.2 You may also refer to that paper to learn how to calculate the orientation

matrix. The orientation matrix, UB, describes the sample orientation with respect to

the diffractometer angles. Given UB, it is possible to calculate the diffractometer an-

gles (2θ , θ , χ , φ) necessary to rotate a particular scattering vector Q, indexed by

(H, K, L), into the diffraction position. The matrix B transforms the given (H, K, L)

into an orthonormal coordinate system fixed in the crystal. The matrix U is the rota-

tion matrix that rotates the crystal’s reference frame into the spectrometer’s.

The first step in constructing an appropriate orientation matrix is to enter the sam-

ple crystal lattice parameters a, b, c, α, β and γ.3 These are real-space parameters, as

might be found in Wychoff4 or Pearson.5 Use the macro setlat to assign values:

1.FOURC> setlat 3.61 3.61 3.61 90 90 90

2.FOURC>

Next, you must specify the sets of values of (2θ , θ , χ , φ) at which two Bragg reflections
are in the diffracting position. One of these is called the primary reflection. Fourc

ensures that the values of (H, K, L) reported for the primary reflection agree (to
within a scale factor) with the values entered. However, because of experimental er-
rors and/or uncertainties in the unit cell parameters, the values of (H, K, L) reported
for the other Bragg reflection, called the secondary reflection, may not agree perfectly
with the entered values (although they should be close).

You can use the or0 and or1 macros to enter the parameters for the primary and sec-
ondary reflections, respectively. However, the or0 and or1 macros require that the
diffractometer be moved to the associated reflections, as these macros use the current
angles and the entered (H, K, L) in the calculation of the orientation matrix. Alterna-

tively, you can use the setor0 and setor1 macros, which prompt for both (H, K, L)

and the angles that define the orientation matrix, without moving the spectrometer
to the given settings.

2W. R. Busing and H .A. Levy, Acta Cryst. 22, 457 (1967). Note however, that this paper uses right-handed
coordinates systems and left-handed rotations for all rotations except for χ, which is right-handed.

3The conventional symbols for the crystal lattice angles include α and β. These angles are unrelated to the
orientation angles α and β defined in the introduction. The different meanings should be clear from context.

4R. W. G. Wychoff, Crystal Structures (Wiley, New York, 1964).

5P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (Ameri-
can Society for Metals, Metals Park, Ohio, 1985).

200 FOUR-CIRCLE REFERENCE

Four-Circle Modes

As noted above, because there are three Euler angles (θ , χ , φ) while the direction of

the scattering vector Q is specified by only two angles, there is a degeneracy associ-

ated with the transformation from (H, K, L) to (2θ , θ , χ , φ). The degeneracy is re-

solved in fourc by providing a constraint. In fourc, the different constraints are called

modes. The value of the g_mode geometry parameter determines the prevailing

mode.

Fourc defines several angles in order to specify certain of the modes.

The angle ω is defined as ω = θ − (2θ)/2, and is referred to as OMEGA.

The angle ψ (referred to as AZIMUTH) specifies a clockwise rotation about the diffrac-

tion vector. The zero of ψ is determined by a reference vector, different from the dif-

fraction vector. The azimuthal angle ψ is defined to be zero when this vector is in the

diffraction plane.

The angles α (ALPHA) and β (BETA) are defined such that the angles between the az-
imuthal reference vector and the incident and scattered X-rays are 90°−α and 90°−β,
respectively. One commonly used azimuthal reference vector is the sample’s surface
normal, which then makes α and β correspond to the incident and exit angles of the
X-rays on the surface.

Omega Equals Zero (g_mode = 0)

The simplest constraint is ω = 0. Any (H, K, L) with a small enough 2θ can be
reached in this mode.

Omega Fixed (g_mode = 1)

In this mode ω is fixed to a finite value. Suppose you want to go the the (0, 0, 2) Bragg

reflection but with ω = 10. You would then type

2.FOURC> setmode 1

Now using Omega-Fixed mode.

3.FOURC> OMEGA=10

4.FOURC> br 0 0 2

5.FOURC>

FOUR-CIRCLE REFERENCE 201

Zone or χ and φ Fixed (g_mode = 2)

A zone of reciprocal space is a plane passing through the origin. A zone axis is the di-

rection of the normal to this plane. The zone axis can be specified by the vector prod-

uct of any two non-colinear points in the zone. Zone mode forces the specified zone

axis to be normal to the scattering plane. In other words, a zone of the crystal is lev-

eled into the scattering plane of the spectrometer. Any point in this plane can then

be reached with θ and 2θ (i.e., χ and φ are fixed). The geometry code provides for the

calculation of the χ and φ necessary to put any two reciprocal space positions in the

scattering plane via the cz , sz or mz macros. These macros are explained later.

Phi Fixed or Three Circle (g_mode = 3)

The angle φ is fixed at some arbitrary value.

Azimuth Fixed (g_mode = 4)

This mode fixes the value of the rotation angle ψ of a reference vector about the scat-
tering vector Q.

Azimuth-fixed mode provides a degree of control that is particularly useful in a sur-
face-diffraction experiment. If the reference vector is chosen to be the surface nor-
mal, setting ψ to 90° rotates the surface normal into the plane defined by the scatter-
ing vector and the diffractometer θ-2θ axis. This means that the incidence angle α
will equal the exit angle β.

The reference vector is defined by the geometry parameters g_haz , g_kaz , and
g_laz . Use the macro setaz to specify the (H, K, L) of the reference vector. For ex-
ample, to set the reference vector to (0, 0, 2), use

5.FOURC> setaz 0 0 2

6.FOURC>

Azimuth-fixed mode will fail if you try to make measurements with Q parallel to
the reference vector, since there is then no way to define a rotation about Q. The

remedy is either to switch to another mode (usually the best choice) or to switch to

another reference vector.

Alpha Fixed (g_mode = 5)

This mode allows you to hold the value of α constant while moving to various values
of (H, K, L). This is useful in experiments in which it is necessary to control the X-

ray penetration depth into a sample. More generally, if looking at a weak signal from

202 FOUR-CIRCLE REFERENCE

a surface, keeping α small will keep the background small with no restriction (in

principle) on the momentum transfer normal to the surface.

Suppose you are studying a sample of copper and you want to fix the incidence angle

to be equal to the critical angle for total external reflection. Set the reference vector

to the surface normal of the crystal and then type the following commands:

6.FOURC> setmode 5
Now using Alpha-fixed mode.

7.FOURC> ALPHA=0.4126

8.FOURC> br 0 2 2

9.FOURC>

To implement alpha-fixed mode, fourc calculates the value of ψ needed to fix the an-

gle between the incident wave vector and the reference vector.6

Beta Fixed (g_mode = 6)

This is the same as alpha-fixed mode except that β, rather than α, may be fixed.

6S. G. J. Mochrie, J. Appl. Cryst. 21, 1-3 (1988).

FOUR-CIRCLE REFERENCE 203

Freezing Angles

For the omega-fixed, phi-fixed, zone, azimuth-fixed, alpha-fixed and beta-fixed

modes you may freeze the value of the associated angle (or angles), so when calculat-

ing motor positions corresponding to an arbitrary (H, K, L) using calcA (within br ,

for example), the angle (or angles) will be reset to the frozen value before the calcula-

tion no matter what the current position of the diffractometer.

The macro freeze waits until all motors have stopped moving, then sets a variable

(g_frz) indicating frozen mode is on and saves the current position of the frozen an-

gle in another variable. Usage might be:

9.FOURC> setmode 1
Now using Omega-Fixed mode.

10.FOURC> freeze 5

Sun Jan 28 12:16:23 1990. Freezing Omega at 5.

11.FOURC>

If the value to freeze for the current mode is not given as an argument to the macro,
the current value of the related angle or parameter is used to set the frozen value. In
zone mode, both the χ and φ values need to be given as arguments.

The macro unfreeze sets g_frz to zero. Subsequent angle calculations will use
whatever the current value of the associated constrained angle or angles for the cur-
rent mode.

204 FOUR-CIRCLE REFERENCE

Sectors

Sectors correspond to different symmetry transformations of (2θ , ω , χ , φ) and may be

of help in avoiding blind spots. Sectors can also be useful for samples in cryostats or

ovens. All modes can have the positions chosen for the motors further influenced by

the choice of sector. However, the modes azimuth-fixed, alpha-fixed and beta-

fixed only allow sectors numbered zero through three, below.

For a given pair of incident and scattered X-ray beams, k
i
and k

f
, there are eight ori-

entations of the crystal in the spectrometer that give the same scattering since they

present equivalent projections to the incident and scattered beams. The eight orien-

tations are labeled as sectors 0 through 7.

Four of the orientations come from the symmetries of a pair of vectors. They corre-

spond to the identity operation (i.e., the current diffraction angles), a rotation of 180°

about k
i
, a rotation of 180° about the bisector of k

i
and k

f
, and a rotation about z by

180° − 2θ. The last two symmetries are based on interchanging the role of the en-
trance angle and the exit angle of the X-rays on the sample. These four symmetries
give sectors 0, 2, 4 and 6 in fourc. For each of these four positions another position
can be obtained by increasing θ by 180°, decreasing φ by −180° and changing the sign
of χ. Since a rotation of 180 and of −180 are the same, both θ and φ can be increased
by 180. These orientations give sectors 1, 3, 5 and 7. Studying these operations
shows that sectors 2, 3, 6 and 7 have opposite signs of 2θ from the current position.
Sectors 2, 3, 4 and 6 have flipped the up direction of the sample (normal to the scat-
tering plane) to the down direction.

The value of g_sect determines in which sector of reciprocal space the diffractometer
operates.

The actual transformations of the angles are:

0 1 2 3 4 5 6 7

2θ → 2θ 2θ −2θ −2θ 2θ 2θ −2θ −2θ
ω → ω ω − 180° −ω 180° − ω −ω 180° − ω ω ω − 180°

χ → χ −χ χ − 180° 180° − χ 180° − χ χ − 180° −χ χ
φ → φ φ − 180° φ φ − 180° φ − 180° φ φ − 180° φ

In addition, a sector 8 is defined to minimize χ − 90° and φ . It can be used when
the χ and φ circles of the diffractometer are arc segments rather than a complete cir-
cle.

FOUR-CIRCLE REFERENCE 205

Cut Points

The angles −90° and +270° are at the same position on a circle, but if a motor in spec
is sitting at 0°, it will move counter-clockwise by 90° to get to the −90° position and

clockwise by 270° to get to the +270° position.

By setting a lower cut point for a particular motor, you can choose what value on the

circle the four-circle angle calculations will produce. That is, the calculations will

place the angle between the lower cut point and that value plus 360°.

Cut points can be set for the θ, χ and φ four-circle angles. For the 2θ angle, the lower

cut point is fixed at −180°. For the azimuth-fixed modes, there is pseudo-cut point

for the azimuthal angle. If the cut point is less than zero, the calculated azimuth will

be between −180° and 0°, otherwise the azimuth will be between 0° and +180°.

The default cut points are shown below.

Angle Default Cut Point

θ −180
χ −180
φ −180
ψ 0

The macro cuts can be used to set or display the cut points. With no arguments, it
displays the current cut points. Two arguments are used to set a single cut point.
Four arguments set all cut points.

11.FOURC> cuts

Cut Points:

th chi phi azimuth
-180 -180 -180 0

12.FOURC> cuts phi 90

or

13.FOURC> cuts -180 -180 90 0

14.FOURC>

206 FOUR-CIRCLE REFERENCE

Four-Circle Files

Most questions regarding the behavior of spec when used with a four-circle diffrac-

tometer can ultimately be resolved by consulting the appropriate source code. The

file geo_fourc.c in the standard distribution of spec contains the code for all the four-

circle calculations. The file u_hook.c contains a few lines of code that connect the

code in geo_fourc.c with the rest of the program. Finally, the files macros/fourc.src

and macros/ub.mac in the standard distribution contains the definitions for all the

four-circle and orientation matrix macros.

Four-Circle Variables

The four-circle coordinate variables (H, K and L, in particular) are stored in a built-in

array named Q[] . The four-circle geometry calculations either use the motor posi-
tions contained in the A[] array to calculate values for the Q[] parameters or place
motor positions in A[] based on the current values in Q[] . Each four-circle variable
has a descriptive macro definition as an alias, such as def OMEGA ’Q[6]’ .

Variable Alias Description

Q[0] H x component of the scattering vector.
Q[1] K y component of the scattering vector.
Q[2] L z component of the scattering vector.
Q[3] LAMBDA Incident X-ray wavelength λ.
Q[4] ALPHA Incident angle α.
Q[5] BETA Exiting angle β.
Q[6] OMEGA ω = θ − (2θ)/2.
Q[7] AZIMUTH Azimuthal angle.
Q[8] F_ALPHA Frozen value of α for alpha-fixed mode.

Q[9] F_BETA Frozen value of β for beta-fixed mode.

Q[10] F_OMEGA Frozen value of ω for omega-fixed mode.
Q[11] F_AZIMUTH Frozen value of ψ for azimuth-fixed mode.
Q[12] F_PHI Frozen value of φ for phi-fixed mode.

Q[13] F_CHI_Z Frozen value of χ for zone mode.

Q[14] F_PHI_Z Frozen value of φ for zone mode.

FOUR-CIRCLE REFERENCE 207

The geometry parameters in the table below affect the geometry calculations in vari-

ous ways. Although the parameters can be changed by assignment, the preferred

method is to use the indicated macro for setting the parameters.

Variable Alias Related Macro Description

G[0] g_mode setmode Specifies the four-circle mode.

G[1] g_sect setsector Specifies the sector.

G[2] g_frz freeze Nonzero when an angle is frozen.

G[3] g_haz setaz H of the azimuthal reference vector.

G[4] g_kaz setaz K of the azimuthal reference vector.

G[5] g_laz setaz L of the azimuthal reference vector.

G[6] g_zh0 mz, sz H of first zone-mode vector.

G[7] g_zk0 mz, sz K of first zone-mode vector.

G[8] g_zl0 mz, sz L of first zone-mode vector.

G[9] g_zh1 mz, sz H of second zone-mode vector.

G[10] g_zk1 mz, sz K of second zone-mode vector.
G[11] g_zl1 mz, sz L of second zone-mode vector.

U[0] g_aa setlat a lattice constant in Angstroms.
U[1] g_bb setlat b lattice constant.
U[2] g_cc setlat c lattice constant.
U[3] g_al setlat α lattice angle.
U[4] g_be setlat β lattice angle.
U[5] g_ga setlat γ lattice angle.
U[6] g_aa_s setrlat a* reciprocal lattice constant.
U[7] g_bb_s setrlat b* reciprocal lattice constant.
U[8] g_cc_s setrlat c* reciprocal lattice constant.
U[9] g_al_s setrlat α* reciprocal lattice angle.
U[10] g_be_s setrlat β* reciprocal lattice angle.
U[11] g_ga_s setrlat γ* reciprocal lattice angle.

U[12] g_h0 or0, setor0 H of primary reflection.
U[13] g_k0 or0, setor0 K of primary reflection.
U[14] g_l0 or0, setor0 L of primary reflection.

U[15] g_h1 or1, setor1 H of secondary reflection.

U[16] g_k1 or1, setor1 K of secondary reflection.
U[17] g_l1 or1, setor1 L of secondary reflection.

U[18] g_u00 or0, setor0 Observed 2θ of primary reflection.
U[19] g_u01 or0, setor0 Observed θ of primary reflection.
U[20] g_u02 or0, setor0 Observed χ of primary reflection.

208 FOUR-CIRCLE REFERENCE

U[21] g_u03 or0, setor0 Observed φ of primary reflection.

U[24] g_u10 or1, setor1 Observed 2θ of secondary reflection.

U[25] g_u11 or1, setor1 Observed θ of secondary reflection.

U[26] g_u12 or1, setor1 Observed χ of secondary reflection.

U[27] g_u13 or1, setor1 Observed φ of secondary reflection.

The first three parameters select modes and set flags. The next three parameters de-

scribe the components of the azimuthal reference vector. The six after that describe

the zone-mode vectors.

The next sets of parameters describe the orientation matrix, including the lattice con-

stants of the sample and the parameters of the primary and secondary orientation re-

flections. Remember that the calcG macro, described below, must be called to make

sure the orientation matrix is recalculated after changing any of these related values

above. The or0 , setor0 , or1 , setor1 , or_swap and setlat macros do just that.

Four-Circle Functions

You can access the four-circle calculations through spec’s user-hook routine calc() .
The table below summarizes the calculations available.

Function Alias Description

calc(1) calcA Calculate motor positions for current H K L.
calc(2) calcHKL Calculate H K L for motor positions in A[] .
calc(4) calcG Recalculate orientation matrix.
calc(4,1) USER_UB Returns 0, 1 or 2 if UB is from reflections, entered

direcly or a result of fitting.
calc(5) calcZ Calculate χ and φ for zone feature.
calc(7,0) calcD Calculate direct lattice from reciprocal parameters.
calc(7,1) calcR Calculate reciprocal lattice from direct parameters.
calc(8) calcE Calculate λ for current monochromator positions.

calc(9) calcM Calculate monochromator position for current λ.

calc(10) _begUB Initialize sums for fitting UB.
calc(11) _addUB Add a reflection to fitting sums.
calc(12) _fitUB Fit UB.

calc(13) calcL Calculate lattice parameters from UB.

FOUR-CIRCLE REFERENCE 209

Four-Circle Macros

The macros below are used in setting the parameters and selecting modes.

Name Arguments Description

setmode 1 optional Choose geometry mode.

setsector 1 optional Choose sector.

setlat 6 optional Set lattice parameters.

setaz 3 optional Set azimuthal reference vector.

setmono 2 optional Set beam-line monochromator parameters.

or0 3 optional Set primary orientation reflection.

or1 3 optional Set secondary orientation reflection.

setor0 none Alternative to set primary orientation reflection.

setor1 none Alternative to set secondary orientation reflection.

or_swap none Swap values for primary and secondary vectors.

freeze none Turn on freeze mode.
unfreeze none Turn freeze mode off.
cz 6 Calculate zone.
sz 6 Set zone parameters.
mz 6 Move to zone.
cuts 2 /6 optional Show or set cut points.

Most of the macros with optional arguments will prompt for the required values if in-
voked without arguments. Using any of these macros to change a parameter will
produce a comment on the printer and in the data file.

The or0 macro is a typical example of these macros.

14.FOURC> prdef or0
def or0 ’{

local _1 _2 _3

if ($# == 3) {
_1 = $1; _2 = $2; _3 = $3

} e lse if ($# == 0) {
print "\nEnter primary-reflection HKL coordinates:"
_1 = getval(" H", g_h0)
_2 = getval(" K", g_k0)
_3 = getval(" L", g_l0)

} e lse {
print "Usage: or0 or or0 H K L"
exit

}
waitmove; get_angles
gpset _1 g_h0 # gpset documents the change
gpset _2 g_k0

210 FOUR-CIRCLE REFERENCE

gpset _3 g_l0
gpset A[mA[0]] g_u00
gpset A[mA[1]] g_u01
gpset A[mA[2]] g_u02
if (_numgeo > 3) { gpset A[mA[3]] g_u03 }
if (_numgeo > 4) { gpset A[mA[4]] g_u04 }
if (_numgeo > 5) { gpset A[mA[5]] g_u05 }
if (_numgeo > 6) { gpset A[mA[6]] g_u06 }
gpset LAMBDA g_lambda0
calcG

}’

15.FOURC>

Zone Macros

Zone mode is controlled with the cz (calculate zone), sz (set zone) and mz (move
zone) macros. Given two Bragg reflections, cz will calculate and display the values of
χ and φ necessary to put both of these reflections in the scattering plane. To find the
angles needed to put (0, 0, 2) and (0, 2, 2) in the scattering plane, type

15.FOURC> cz 0 0 2 0 2 2
Chi = 45 Phi = 90

16.FOURC>

Once appropriate values of χ and φ have been calculated, the scattering plane can be
set using the pl (plane) macro, which moves the 2θ and θ motors together,

16.FOURC> pl 45 90

17.FOURC>

Alternatively, you can use the mz macro, which calculates the necessary χ and φ,

moves there, sets zone mode, if not already in it, and saves the values of the zone
vectors in the G[] geometry parameter array.

17.FOURC> mz 0 0 2 0 2 2

18.FOURC> p A[chi], A[phi]
45 90

19.FOURC>

The sz macro calculates and displays the χ and φ values, sets zone mode, if not al-

ready in it, saves the values of the zone vectors, sets the frozen values of zone-mode

χ and φ, but does not move the diffractometer.

FOUR-CIRCLE REFERENCE 211

The cz , sz and mz macros make use of the Z[] array variables to pass the zone vec-

tors to the geometry code.

19.FOURC> prdef cz
def cz ’

if ($# != 6) {
eprint "Usage: cz h0 k0 l0 h1 k1 l1"
exit

}
Z[0]=$1; Z[1]=$2; Z[2]=$3; Z[3]=$4; Z[4]=$5; Z[5]=$6
calcZ
printf("Chi = %g Phi = %g\n", A[chi], A[phi])
waitmove; get_angles; calcHKL

’

20.FOURC>

Least-Squares Refinement of Lattice Parameters

In the previous sections, the procedure described for determining the orientation ma-
trix required a knowledge of the lattice parameters of the crystal and the position of
two reflections. When such information is unknown, the orientation matrix can be fit

to an unlimited number of observed peak positions using a least-squares procedure.7

Lattice parameters derived from the fitted orientation matrix can then be calculated,
although such lattice parameters are not constrained to exhibit any symmetry what-
soever.

In spec’s implementation of least square refinement, three macros are used to create
a file that contains the observed peak positions. That file is eventually run as a com-
mand file, and the least squares analysis is performed.

7J. Matthews and R. L. Walker, Mathematical Methods of Physics, (Benjamin, Menlo Park, 1970), p. 391.

212 FOUR-CIRCLE REFERENCE

The reflex_beg macro initializes the reflections file:

global REFLEX # Variable for file name
Open the file, save old one as .bak and write header
def reflex_beg ’{

if ("$1" == "0") {
if (REFLEX == "")

REFLEX = "reflex"
REFLEX = getsval("Reflections file", REFLEX)

} e lse
REFLEX = "$1"

if (open(REFLEX))
exit

close(REFLEX)
if (file_info(REFLEX, "-s"))

unix(sprintf("mv %s %s.bak", REFLEX, REFLEX))
fprintf(REFLEX,"# %s\n\n_begUB\n\n",date())

}’

The reflex macro adds lines to the file that contain the (H, K, L) and (2θ , θ , χ , φ) of
each reflection:

Add reflection to the file
def reflex ’

if ($# != 3) {
print "Usage: reflex H K L"
exit

}
if (REFLEX == "") {

REFLEX = getsval("Reflections file", "reflex")
if (REFLEX == "")

exit
}
waitmove; get_angles; calcHKL
fprintf(REFLEX,"H = %g; K = %g; L = %g\n",$1,$2,$3)
{

local i

for (i=0; i<_numgeo; i++)
fprintf(REFLEX,"A[%s]=%9.4f; ",motor_mne(mA[i]),A[mA[i]])

fprintf(REFLEX,"\n")
}
fprintf(REFLEX,"# counts = %g\n", S[DET])
fprintf(REFLEX,"_addUB\n\n")

’

FOUR-CIRCLE REFERENCE 213

Finally, the reflex_end macro puts the proper trailer on the file:

Add trailer to file
def reflex_end ’

fprintf(REFLEX,"_fitUB\n")
printf("Type \"qdo %s\" to calculate new orientation matrix\n",\

REFLEX)
’

When you are ready to calculate the orientation matrix, simply run the command file.

There is no limit to the number of reflections contained in the file. You can also edit

the file by hand to add or subtract reflections.

The calculated orientation matrix will remain valid until you type calcG , or invoke a

macro that calls calcG . Those macros are or0 , or1 , or_swap and setlat .

The six original lattice parameters will remain unchanged when using the above

macros to fit the orientation matrix to the reflections. The calcL macro can be in-

voked to calculate the lattice parameters derived from the fitted orientation matrix
and place their values in the appropriate elements of the parameter array. The old
lattice parameters will be lost.

Here is a sketch of the commands you use to perform the least squares refinement of
the lattice parameters.

20.FOURC> reflex_beg
Reflections file (reflex)? <return>

21.FOURC> (find and move to a reflection ...)

22.FOURC> reflex 2 2 0

23.FOURC> (find and move to another reflection ...)

24.FOURC> reflex 2 0 2

25.FOURC> ...

26.FOURC> reflex_end
Type "qdo reflex" to recalculate orientation matrix.

27.FOURC> qdo reflex
Opened command file ‘reflex’ at level 1.

28.FOURC>

At least three reflections must be used for the least-squares fitting to work.

214 FOUR-CIRCLE REFERENCE

To calculate the new lattice parameters, use the calcL macro:

28.FOURC> calcL

29.FOURC> pa

Four-Circle Geometry, Omega fixed (mode 1)
Frozen values: Omega = 5
Sector 0

Primary Reflection (at lambda 1.54):
tth th chi phi = 74.212 42.106 89.898 -80.2141

H K L = 2 2 0

Secondary Reflection (at lambda 1.54):
tth th chi phi = 24.631 17.3155 135.315 -82.9029

H K L = 0 1 0

Lattice Constants (lengths / angles):
real space = 4.127 4.123 4.111 / 90.04 89.98 90.12

reciprocal space = 1.523 1.524 1.528 / 89.96 90.02 89.88

Azimuthal Reference:
H K L = 0 0 1

Cut Points:
tth th chi phi

-180 -180 -180 -180

30.FOURC>

Here is a typical reflections file created by the above macros:

Wed Jan 31 21:55:01 1990

_begUB

H = 2; K = 2; L = 0
A[tth]= 63.8185; A[th]= 36.9320; A[chi]= 89.8765; A[phi]= -80.0815
c ounts = 3456
_addUB

H = 2; K = 0; L = 2
A[tth]= 63.8335; A[th]= 36.8920; A[chi]= 145.4185; A[phi]= 42.8145
c ounts = 6345
_addUB

H = 0; K = 2; L = - 1
A[tth]= 49.4100; A[th]= 29.6725; A[chi]= 35.8180; A[phi]= 45.9070
c ounts = 5634
_addUB

H = 0; K = 2; L = - 1

FOUR-CIRCLE REFERENCE 215

A[tth]= 49.3550; A[th]= 29.7225; A[chi]= 35.9380; A[phi]= 45.9070
c ounts = 4563
_addUB

_fitUB

Within this file, the calc() function codes defined by the macros _begUB , _addUB and

_fitUB are used to access the C code that performs the least squares operations.

216 FOUR-CIRCLE REFERENCE

ADMINISTRATOR’S GUIDE

218 ADMINISTRATOR’S GUIDE

Introduction

The first section of this guide outlines the procedure for installing spec on your com-

puter. Later sections describe the format of some of the installed files.

Quick Install

For those who need little explanation, here are minimal installations instructions

based on the customary configuration:

First time, create a specadm user account, then
cd ˜ specadm
mkdir spec6.05.03 # c hoose name based on release
cd spec6.05.03
tar xvf .../spec_ XXX.tar # use pathname of distribution
If an u pdate, start with last version’s parameters
cp ../spec_ YYY/install_data . # use pathname of previous distribution
./Install # as root

The Install program will display the current installation parameters and prompt for
changes. Use the command ./Install -d to use the parameters from an existing in-

stall_data file, skipping the interactive prompts. Once the software is installed, run
the spec executable and type config to invoke the hardware configuration editor.

For those needing more detailed instructions, read on.

Steps For Installing spec
To install spec on your computer, be sure you have the software development tools
available. spec’s requirements include the make utility, a compatible C compiler, and
compatible runtime libraries for linking.

Before installing spec for the first time, you need to make several decisions:

Decide who will own the files. Most sites create a special user account, usually with
the name specadm, that has a home directory used to hold the spec distribution files
and is the user account assigned to own the installed spec files. Having a special

specadm account allows you or other users to configure and edit spec files without in-

voking super-user powers, thus lowering the risk of making catastrophic errors.

Decide where to put the distribution. The distribution files are what come directly
from CSS, usually as a tar file sent via internet. (In olden times, the files were on a

floppy disk, a magnetic tape or a CD-ROM.) These distribution files need to be

ADMINISTRATOR’S GUIDE 219

extracted into a distribution directory that serves as a “staging” area for the installa-

tion. The files needed while running spec will be copied elsewhere during installa-

tion, so the distribution directory need not be always accessible to the spec users.

However, it is usually advised to keep the distribution files available for reference.

You will likely receive updated distributions from time to time, and it is a good idea

to keep each distribution in a separate directory. The usual choice is to put the distri-

bution in the specadm home directory in a subdirectory named after the spec version

number, such as ˜ specadm/spec6.05.03.

Decide where the installed files will go. Two directories are needed for the installed

files. One is a directory for the executable programs. Most sites choose /usr/lo-

cal/bin. This directory needs to be in each spec user’s search path. The second di-

rectory is for spec’s auxiliary files. The usual choice is /usr/local/lib/spec.d.

Once these decisions are made and you have created a spec administrator user ac-

count (if used) and the directories mentioned above (if needed), you are ready to per-

form the installation. In brief, to install spec you:

• extract the distribution from the supplied media or tar file,

• run the installation program to install the spec files,

• enter the hardware configuration for your particular experimental set-up.

In addition to the information presented below, be sure to consult any README files
in the spec distribution directories for up-to-date information on installation proce-
dures.

Extracting the Distribution

If you have made a spec administrator’s account, you should become that user (or
the root user), either by logging in or by using the set-user id command su specadm .

You can then change to the spec administrator’s home directory and use it as a place
to hold the distribution files.

Make a subdirectory to receive the current version of spec. If the distribution is

numbered release 6.05.03, you might make a directory called spec6.05.03 using the

command mkdir spec6.05.03 . Change to the new directory with cd spec6.05.03 .

220 ADMINISTRATOR’S GUIDE

The distribution will be in tar format. Usually the distribution is obtained as a tar

file via internet. If the distribution arrives via magnetic media or a CD-ROM, the

command to extract the tar file should be printed on the distribution label. For a tar

file, the command to extract the files is

tar xvf specdist.tar

Installing the spec Program Files

To install the spec files, particularly for a first time installation, you may need to in-

stall as root. Use the su command to gain super-user privileges. If you are updating

from previous distributions, you can copy the most recent install_data file containing

your default installation parameters to the new distribution directory. Then, from

the current spec distribution directory, type ./Install to run the installation pro-

gram. If updating an existing installation and using the same installation parame-
ters as before, type ./Install -d (for default) to skip the interactive portion de-
scribed next.

The Install program will first indicate the current installation parameters. You may
either accept those or enter new parameters. When entering new parameters, the de-
fault response to each question is given in parenthesis. Most questions present a
number of choices. You can either type the number of the choice or you can type out
the literal selection. If one of the options is the word “other”, such as for the name of
a directory, you can directly type your selection when prompted. For most questions,
the first choice listed is probably the best response. For example,

Choices for binaries directory are:

1) /usr/local/bin
2) /usr/local
3) /usr/local/spec/bin
4) /u/bin
5) /LocalLibrary/Spec/bin
6) other

Choose binaries directory (/usr/local/bin)?

Entering a single minus sign (−) will move back to the question for the previous pa-

rameter, allowing you to enter a different value.

The installation questions ask for the following parameters:

geometry − Selects from the supported diffractometer configurations.

ADMINISTRATOR’S GUIDE 221

installed name − Selects a name for the installed program. For configurations with

special geometry code, the first four letters of the name must match the first

four letters of the geometry configuration. Thus, fourcL and fourcR might be

the names for the left- and right-hand sides of a rotating anode lab with two

four-circle diffractometers.

additional geometries − Asks if you want to enter more combinations of the previous

two items.

file ownership − Selects the name of the owner of the spec files.

binaries directory − Selects where the programs that users run directly from the shell

will go. (It’s better to put spec files in some place other than the standard

/bin or /usr/bin, in order to be able to distinguish files that are standard UNIX

from those that have been added locally.) This directory should be in each

spec user’s search path.

auxiliary directory − Selects where spec puts its auxiliary files. This directory is
preferably on a local disk, as it contains files that are frequently updated, par-
ticularly the motor settings file.

TACO library directory − Gives the location of the TACO device server libraries if in-
stalling on a TACO device server platform. Gives the location of the TACO de-
vice server libraries, if using. There should be a subdirectory named "lib" in
this directory. If using TANGO, enter "no" here and configure TANGO on next
screen.

TANGO library directory − Gives the location of the TANGO device server libraries.

EPICS library directory − Gives the location of the EPICS channel access libraries if
installing on an EPICS platform. The location can be the directory that has a
subdirectory named base, the path name to the base directory that has a subdi-
rectory named lib, or the complete path to the directory containing the EPICS

libraries for this platform.

HDF5 library directory − Gives the location of the HDF5 libraries. Enter a value to
enable spec’s HDF (Hierarchical Data Format) data commands. Including

HDF5 support with the default static libraries nearly doubles the size of the

spec executable image.

config file permissions − Selects who can change the hardware configuration file. On
a low-security site, select the first choice, which lets all spec users make

changes as needed. See security notes on page 237 for additional considera-
tions.

command-line editing options − Selects an alternative library that will be linked with
spec to provide a more powerful history recall syntax than the minimal built-

222 ADMINISTRATOR’S GUIDE

in spec history mechanism. The alternative library also includes command

line editing features. spec includes a prebuilt version of the Berkeley libedit

library.

Extra compiler flags − Allows you to add extra compiler flags for both compiling the

site-dependent source files and linking.

Extra object files − Allows you to specify extra site-dependent object files to include

when linking the spec executable.

Extra library flags − Allows you to specify extra site-dependent libraries to be

searched during the link phase when producing the spec executable.

After answering the questions, the installation should then continue automatically,

producing output similar to the following:

This program will install version 6.05.03 of the spec package.
Type "Install -" to see invocation options.

Checking if u_hook.c needs compiling ...
Compiling u_hook.c ...
Compiling u_hdw.c ...
Checking if geo_fourc.c needs compiling ...
Checking if spec needs to be linked ...
Linking spec ...
Installing config auxiliary files ...

Installing fourc ...
cp fourc /usr/local/bin/fourc

Checking "fourc" config and settings file permissions ...
Installing macros ...

Installing /usr/local/lib/spec.d/standard.mac ...
Installing /usr/local/lib/spec.d/four.mac ...

Installing the high res graphics filters ...
Installing help files ...

Clearing out old help files ...
Making the "help" help file ...
Copying help files ...
Changing ownership of help files to gerry ...

Installing the chelp program ...
Installing the show_state program ...
Installing data_pipe auxiliary files ...

Building data_pipe utility "dp_cplot" ...
Installing auxiliary "include" files ...
cp spec_shm.h /usr/local/lib/spec.d/include
cp spec_server.h /usr/local/lib/spec.d/include
Installing the "showscans" package ...
cp show.awk /usr/local/lib/spec.d
cp scans /usr/local/bin
Installing the "contents" program ...

ADMINISTRATOR’S GUIDE 223

cp contents /usr/local/bin
Installing the "tidy_spec" program ...
cp tidy_spec /usr/local/bin
Installing the "wiz_passwd" program ...
cp wiz_passwd /usr/local/bin
Installing splot utility ...

Clearing out old splot files ...
mkdir /usr/local/lib/spec.d/splot

Copying splot files ...
Changing ownership of splot files to gerry ...

Creating spec.conf file ...

Done with spec Install!

If you change certain parameters that require relinking spec and don’t see the Link-
ing spec ... message when rerunning the Install program, simply remove the spec

file and run Install again.

Selecting the Hardware Configuration

The final step in the initial spec installation is to set the hardware configuration spe-
cific to your site. You can do that either by starting the spec program and typing
config , which is macro that executes the configuration editor, or by running the con-
figuration editor directly. For the latter, first change to /usr/local/lib/spec.d (or to
the auxiliary file directory specified when you did the installation). If you are in-
stalling the normal four-circle version of the program, type the command ed-
conf fourc . If you installed a different geometry, give the name of that geometry as
the argument. This command starts a spread-sheet styled program that lets you se-
lect motor parameters, devices names, etc.

Refer to the notes on the configuration editor that follow for instructions on using ed-

conf.

Adding Site-Dependent Help Files

If a file named .local in the spec_help subdirectory of the auxiliary file directory exists
and contains a list of file names, those names will be added to the topics contained in

the help help file when spec is installed.

224 ADMINISTRATOR’S GUIDE

When spec starts up, the help file news, which is provided by CSS, and the file local,

if it exists, will be displayed. The help file format is described on page 81 in the Ref-

erence Manual.

Adding Site-Dependent C Code

This step applies only to sophisticated end users of spec who understand the C lan-

guage and need to customize spec for specific, site-dependent uses. Most readers can

skip to the next section. Note also, local code can be accessed using the data-pipe fa-

cility explained on page 124 in the Reference Manual.

spec has provisions for end users to add their own C code to the program. User-

added code is accessed using the built-in calc() function. If you wish to incorporate

non-standard calculations within the spec program, you can do so by adding hooks

for the code in the u_hook.c source file. C code that you add should, in general, be

limited to calculations. You should avoid I/O, signal catching, etc. Consult CSS for
specific information about what is appropriate for including in user-added C code.
The geo_*.c files in the standard spec distribution that contain the X-ray diffrac-
tometer geometry code are examples of site-dependent code.

Within u_hook.c there is a routine called init_calc() . This routine is called once
when spec starts up. Within init_calc() , calls to the routine

ins_calc(int num, i nt (* func)())

insert the C routine func in a table of functions. These functions are called when
calc(num) or calc(num, arg) is typed as a command to spec. The routine func ()
should be specified as either

func (int num)

or

func (int num, d ouble arg)

depending on whether calc() is to be invoked with one or two arguments.

Any return value from func () is ignored. However, you can have the calc() routine

return a value by assigning a number to the variable

extern double calc_return;

in func () . If no explicit assignment is made to calc_return , calc() returns zero.

The argument num can be from 0 to 63, but must be chosen not to conflict with any of

the other ins_calc() entries already existing in u_hook.c.

You can also create built-in arrays of double precision, floating point numbers that
can be used to communicate values between your C code and the user of the program.

ADMINISTRATOR’S GUIDE 225

The routine

ins_asym(double ** x , i nt n, c har * s)

inserts the array x consisting of n elements into the table of built-in symbols. The

character pointer s points to a string containing the name used to refer to the array

from spec command level. For example,

#define N_PARAM 28
double *gparam[N_PARAM];
init_calc() {

...
ins_asym(gparam, N_PARAM, "G");
...

}

inserts the 28-element array referred to as G[] into the program. Since the array

gparam[] is an array of pointers, you must use the indirection operator (*) when re-

ferring to the values of the floating point numbers in your C code, as in

...
*gparam[3] = 1.54;
...
if (*gparam[2] == 0)

...

If you make any changes to u_hook.c, you must relink and reinstall the spec binary.

Updating spec
spec updates are normally extracted into a directory named after the spec version
number, as in /usr/specadm/spec6.05.03 for version 6.05.03 of the software. The in-
structions above for extracting the distribution and installing the files also apply to
updates.

Existing settings and config files from a previous installation will not be disturbed
during an update. Each user’s state file will also remain intact, although it is recom-
mended that users either start out fresh (by typing fourc −f) or run the macro com-

mand newmac after new versions are installed to incorporate improvements to the

standard macros in their state files. Occasionally, new versions will not be compati-
ble with previous state files, and spec will automatically throw out the old state files,
print a message and start fresh anyway. Use the tidy_spec utility to clean out old

state files to free up disk space, especially if the old state files are obsolete with the

newer version of spec.

The help file changes will contain summaries of the significant bug fixes and improve-
ments to spec included in the update.

226 ADMINISTRATOR’S GUIDE

Installed Files

File Hierarchy

After installation and site configuration on a computer running, for example, both a

four-circle and a z-axis diffractometer, the spec file hierarchies would appear some-

thing like the following,

|-chelp
|-contents
|-dpmake
|-fourc

/usr/local/bin --------|-scans
|-showscans
|-show_state
|-specfile
|-splot
|-tidy_spec
|-wiz_passwd
|-zaxis

|-README
|-data_pipe-----|-data_pipe.mak
| | -data_pipe.o
| | -pipe_test.c
| | -user_pipe.h
|
|-edconf |-config |-hdw_lock
|-four.mac |-settings |- user _tty H
|-fourc---------|-conf.mac |- user _tty L
| | -userfiles-----|- user _tty P
| | - user _tty S
|-hgr-----------|-x11filt |- ...
|
|-include-------|-spec_server.h
| | -spec_shm.h

/usr/local/lib/spec.d -|-passwd
|-show.awk
|-site.mac |-help |-angles
|-site_f.mac |-help.tmac |-ackno
|-spec.conf |-help_man-----|-changes
|-spec_help-----| |- ...
| |
| | |-angles
| | -help_pre-----|-ackno
| | |-changes
| | |- ...
| | -news
| | -nroff_help.tmac
| | -old_help.tmac
| | -rst2man
|
|-splot---------|- many splot files
|

ADMINISTRATOR’S GUIDE 227

|-standard.mac |-config |-hdw_lock
|-zaxi.mac |-settings |- user _tty H
|-zaxis---------|-conf.mac |- user _tty L

|-userfiles-----|- user _tty P
|- user _tty S
|- ...

where /usr/local/bin is the installation directory, configured as INSDIR in the Make-

file, and /usr/local/lib/spec.d is SPECD, the auxiliary file directory. Of the programs

installed in /usr/local/bin, contents and showscans are described in the User Man-

ual, while the camac utility program is described below. The chelp utility is a stand-

alone help file viewer that allows browsing of the spec help files without having to

run spec.

The subdirectory fourc contains the files specific to the four-circle diffractometer. The

name fourc matches the name by which the program is invoked. The first four letters

of the name determine the geometry configuration. If a single computer is to control

two spectrometers, they could be called fourcL and fourcR, and the Install program
would create separate subdirectories called by those names for each.

Within the diffractometer directory is the associated configuration file, config, which
specifies the hardware and the motor parameters to be used. Also associated with
each diffractometer is the settings file that tracks changes in the motor position and
limit settings. The edconf program can be used to to modify the contents of these two
files.

The subdirectory userfiles contains each user’s state files on a per terminal basis.
These files allow the user to exit spec and restart at a later time, retaining macro
definitions, variable assignments, etc. The spec administrator may, from time to
time, delete old state files for users not expected back again, especially if disk space is
a problem. The tidy_spec program reports on the disk usage of all the userfiles direc-
torys and provides options for removing files by age, user, tty or spectrometer geome-
try. Type tidy_spec − from the shell for usage options.

Accessing Protected I/O Ports On PC Platforms Running linux

In order to enable spec’s built-in support for certain instrument control and data ac-

quisition devices, spec needs access to resources that are generally off limits to nor-
mal users. For some hardware, spec needs access to /dev/mem to map PCI/PCIe
memory space to the spec process ("dac override" capability, which overrides discre-

tionary access control, that is, bypasses file access permissions). On some recent

Linux platforms, PCI/PCIe cards used by spec are disabled on boot by the Linux ker-
nel, and spec needs escalated privileges to enable the cards ("sys admin" capability).
If udev rules are not in place to set permissions for USB devices supported by spec,

228 ADMINISTRATOR’S GUIDE

spec will use escalated permissions to open the device nodes (also "dac override" ca-

pability). For some older PC cards, spec needs direct access to I/O ports, which it

gains using the iopl() system call ("sys rawio" capability).

Up until spec release 6.05.01, access was achieved by making spec a set-user-id root

executable. With current releases, the Linux capabilities facility is used. If the

Linux platform lacks the setcap command, spec will use set-user-id root mode, as be-

fore. The command to set capabilities is the following:

setcap "cap_dac_override=ep cap_sys_rawio=ep cap_sys_admin=ep" spec

The command to make spec set-user-id root is:

chown root spec && chmod u+s spec

The spec Install script will automatically execute one or the other of the above com-

mands on Linux platforms if the script is run by the root user.

To protect the system whether using setcap or set-user-id mode, spec turns off all

special privileges immediately on program start up and only enables the capabilities
around the few lines of code used to gain access to the otherwise unavailable re-
sources.

The Configuration Editor

The edconf program is the primary means for maintaining the hardware configura-
tion. When running spec, edconf is usually run by invoking the config macro.
Without arguments, edconf will use the config and settings files in the current direc-
tory. If given a directory name as an argument, it will use the files in that directory.
If invoked with the −s flag, edconf will run in simulate mode, allowing you to view but
not modify the files. If you do not have write permission for the config file, edconf will
automatically run in simulate mode.

To get a list of the available commands while running edconf, type a question mark
(?). Note, the available commands are different on different screens. The following

commands are available:

Arrow keys Move around.
h j k l Move left, down, up, right (just like in the vi editor).

<return> Enter data or move down one row.

<space> Move right.

’ or " Enter to change string-valued cell (e.g. motor names).
ˆA Edit value from start of string

ADMINISTRATOR’S GUIDE 229

ˆE Edit value from end of string

+ − > < Step through list of choices (if <> appears in label).

r Reread settings and config files.

w Write settings and config files.

R Read from backup settings and config files.

c Change to next screen.

M Change to Motor screen.

m Step through motor parameter screens.

C Change to CAMAC screen, page through additional CAMAC

screens.

I Change to Interfaces screen.

D Change to Devices screen.

A Change to MCA/Image Acquisition screen.

S Change to Scalers (counters) screen.

s Switch between main and optional parameter scaler screens.

p Change to and from custom optional parameters screen.
a Append an entry on the custom parameter screen.
i Insert a motor at current position or an entry on the custom

parameter screen.
d Delete the motor at current position or an entry on the cus-

tom parameter screen.
G Toggle all-motors mode with linked geometry configurations.

ˆF Scroll forward through motors on the motor screen, counters
on the scalers screen, configured controllers on the devices
screen, module choices on the CAMAC screen, items on
drop-down menus, etc.

ˆB Scroll backwards, as above.
ˆG Go to first item in scrollable list.

ˆD Blank out optional motor parameter fields.
ˆL Refresh the screen.
ˆW Gain wizard access to set protections.

H Print help information for current screen.

? Print command help window.
q Quit.

ˆC Exit.

There are five types of data cells in the configuration spread sheet. For number-val-

ued cells, simply enter the number value when the cell is highlighted. For string-val-
ued cells, such as motor names, you must first type a single quote (’) before entering
the string. For YES/NO cells, type a y or an n . The fourth type of cell has the

230 ADMINISTRATOR’S GUIDE

characters <> before the cell label. For these cells, use the + , − , < , or > keys to step

through the possible choices. For all types of cells, the <return> key enters the val-

ues. The fifth type of cell is used for entering motor unit/[module]/channel values.

For these cells, type just the channel number for unit zero, or type two or three num-

bers separated by a literal / .

Use the w command to write out the configuration, and use ˆC or q to exit the pro-

gram.

The Settings File

The settings file is a binary file that contains consecutive data for each motor accord-

ing to the following structure:

struct sav_mot {
long sm_pos; /* Current dial position */
float sm_off; /* Current user/dial offset */
double sm_low; /* Software low limit */
double sm_high; /* Software high limit */

};

The settings file must have write permission for everybody who runs spec, as it is up-
dated every time someone moves a motor or changes an offset or limit. When spec
starts out, it checks to see if there is a settings file and creates an empty one if there
isn’t. spec creates a software lock on the settings file using the lockf() library call.
The lock prevents another instance of spec opening the file for writing.

The Config File

The config file is an ASCII file that describes the diffractometer hardware configura-
tion. Although the config file can be edited by hand, you will be safer using the ed-

conf program to make modifications as edconf insures the config file obeys the struc-

turing rules required by spec.

Comment lines in the config file begin with a # . Other lines contain key words speci-
fying devices, CAMAC slots or motor and counter parameters. Key words are fol-
lowed by a space-delimited equals sign and one or more parameters.

The config_adm help file contains up-to-date information about currently recognized

key words and supported hardware devices. The Hardware Reference section of the
manual describes some of the specific hardware devices recognized by spec and indi-
cates the config file syntax required to specify each device.

ADMINISTRATOR’S GUIDE 231

CAMAC Slots

CAMAC slot assignments in the config file consist of a module code on the left and a

slot number on the right. For example,

CA_KS3610 = 2

tells the program a Kinetic Systems 3610 hex scaler is in slot 2.

The following modules names are recognized by spec. More than one of the modules

marked with an asterisk are allowed. Append _# to number modules consecutively,

where # is 0 , 1 , 2 , etc.

CA_BR5302∗ BiRa 5302 ADC as counters

CA_DSP2190 DSP Technology MCS Averager

CA_DXP∗ XIA DXP MCA

CA_E250∗ DSP E250 12-Bit D/A as Motor Controller

CA_E500∗ DSP Technology E500A Stepper Motor Controller
CA_IOM1 BiRa 2601 I/O For E500 Multiplexing
CA_IOM2 F16,A0 I/O For E500 Multiplexing
CA_IOM3 F16,A1 I/O For E500 Multiplexing
CA_IO∗ Any module to be accessed with F codes of 0 or 16
CA_KS3112∗ Kinetic Systems 3112 D to A (as motor controller)
CA_KS3116∗ Kinetic Systems 3116 16-Bit D/A as Motor Controller
CA_KS3195∗ Kinetic Systems 3195 16-Bit D/A as Motor Controller
CA_KS3388 Kinetic Systems 3388 GPIB interface
CA_KS3512∗ Kinetic Systems 3512/14 ADC as counters
CA_KS3610 Kinetic Systems 3610 6-Channel, 50 MHz Counter
CA_KS3640C∗ Kinetic Systems 3640 Up/Down Counter as Counter
CA_KS3640M∗ Kinetic Systems 3640 Up/Down Counter (for SMC’s)
CA_KS3640T Kinetic Systems 3640 Up/Down Counter as Timer
CA_KS3655 Kinetic Systems 3655 8-Channel Timing Pulse Generator
CA_KS3929 Kinetic Systems 3929 SCSI Crate Controller

CA_KS3929_HP Kinetic Systems 3929 SCSI to CAMAC on HP

CA_LC2301 LeCroy 2301 interface for QVT MCA
CA_LC3512 LeCroy 3512 Spectroscopy ADC
CA_LC3521 LeCroy 3521A Multichannel Scaling

CA_LC3588 LeCroy 3588 Multichannel Scaler

CA_LC4434∗ LeCroy 4434 32-Channel Scaler
CA_LC8206 LeCroy MM8206A Histogramming Memory
CA_QS450∗ DSP Technology QS-450 4-Channel Counter

CA_RTC018 DSP Technology RTC-018 Real Time Clock

CA_RTC018M DSP RTC-018 2nd Unit For Monitor

232 ADMINISTRATOR’S GUIDE

CA_SMC∗ Joerger Stepper Motor Controller SMC-L or SMC-24

CA_TS201 DSP Technology TS-201 Dual Timer/Scaler

Motor Parameters

Motor parameter assignment consists of key words of the form MOT000, MOT001, ...,

followed by 11 values. The MOTkey words must be numbered consecutively starting

at zero. The values are:

1 Controller type (E500, SMC, OMS, ...)

2 Steps per unit (degrees, mm, ...) (sign changes direction of motion)

3 Sign between user and dial units (+1 or −1)

4 Steady state rate (Hz) (must be positive)

5 Base rate (Hz) (must be positive) (also used as backlash rate)

6 Steps for backlash (sign changes direction of motion)
7 Acceleration time (msec)
8 Not used
9 Motor flags in hexadecimal (protection, units, etc.)

10 Motor mnemonic (th , phi , sl1 , ...)
11 Motor name (Theta , Phi , Slit 1 , unused , ...)

An example is:

Motor cntrl steps sign slew base backl accel nada flags mne name
MOT000 = E500 −2000 1 2000 200 50 125 0 0x003 tth Two Theta

Valid controller types currently include:

18011 Oriel Encoder Mike Controller 18011
18092 Oriel Encoder Mike 18092
ANORAD Anorad I-Series Controller

ANORAD_E As above, but with encoder
CM3000 Compumotor 3000
CM4000 Compumotor 4000

CMSX Compumoter SX

CMSX_E As above, but with encoder
DAC_B12 PC DAC 12-Bit D/A (binary output)
DAC_B16 PC DAC 16-Bit D/A (binary output)

DAC_T12 PC DAC 12-Bit D/A (two’s complement)

DAC_T16 PC DAC 16-Bit D/A (two’s complement)
E250 DSP E250 12-Bit D/A as Motor Controller
E500 DSP Technology E500A

ADMINISTRATOR’S GUIDE 233

E500_M As above, but with multiplexor

ECB_M RISO ECB Motors

EPICS_M1 EPICS using spec’s config motor parameters

EPICS_M2 EPICS using EPICS’ database motor parameters

ES_OMS ESRF using VME OMS

ES_VPAP ESRF using VME Vpap

GALIL Galil DMC-1000 PC Board

HLV544 Highland Technology VME V544

HUB9000 Huber 9000

IP28 Micro-Controle IP28

ITL09 Micro-Controle ITL09

ITL09_E As above, but with encoder

IXE Phytron IXE

KS3112 Kinetic Systems 3112 12-Bit D/A

KS3116 Kinetic Systems 3116 16-Bit D/A

KS3195 Kinetic SystemsS 3195 16-Bit D/A
MAXE ESRF VME MAXE Motor Controller
MAXE_E As above, but with encoder
MAXE_S As above, but with servo
MAXE_DC ESRF VME DC Motor Controller
MC4 Klinger MC4
MCB Advanced Control Systems MCB
MCU Advanced Control Systems MCU
MCU_E As above, but with encoder
MCU_H As above, with with Heidenhain encoder
MCU_O As above, but with old PROMs
MM2000 Newport MM2000/3000
MM2000_E As above, but with encoder

MM2500 Newport MM2500
MM2500_E As above, but with encoder
MM4000 Newport MM4000/4005

MM4000_E As above, but with encoder

MMC32 NSLS homemade
MURR Missouri Research Reactor Motors
MURR_E As above, but with encoder

NF8732 New Focus Picomotor 8732

NONE Pseudo controller
NSK NSK Motor Controller
NT2400 Laboratory Equipment Corporation Model

OMS Oregon Micro Systems PCX/34/38/39/48

OMS_E As above, but with encoder

234 ADMINISTRATOR’S GUIDE

PI PI DC Motor Controller

PM500 Newport PM500

RIGAKU Rigaku RINT-2000 Motor Controller

SCIPE_A SCIPE Actuator Device

SIX19 Micro-Controle SIX19

SMC Joerger Single Motor Controller

SPI8 Advanced Control System SPI-8

TSUJI Tsuji PM16C-02N

XIAHSC XIA HSC-1

XRGCI_M Inel XRGCI motor controller/timer

Field 2, the steps per unit, may be non-integral, and the units can be in degrees, mil-

limeters or whatever. The rest of the numeric fields must be integral. The motor

names should be kept to nine characters or less, as the standard macros truncate

them to fit a nine-character field when printing them out.

Field 8 is reserved.

Field 9, the flags field, contains several kinds of information. The lowest order two
bits are used to enable particular operations on the selected motor. If bit 0 is set, the
user can move the motor. If bit 1 is set, the user can change the software limits of the
motor. Bits 2 and 3 are used by the edconf program to prevent users from changing
certain configuration information. Bits 8 through 12 are used with the shared config

file feature described below.

Optional motor parameters appear on lines following the MOTkeywords and are of the
form

MOTPAR:dcgain = 1500

Each MOTPARrefers to the immediately preceding motor. Possible parameters are:

encoder_step_size
step_mode
slop
home_slew_rate
home_base_rate
home_acceleration
dc_dead_band
dc_settle_time
dc_gain
dc_dynamic_gain
dc_damping_constant
dc_integration_constant
dc_integration_limit
dc_following_error
dc_sampling_interval
deceleration

ADMINISTRATOR’S GUIDE 235

read_mode
torque
misc_par_1
misc_par_2
misc_par_3
misc_par_4
misc_par_5
misc_par_6

Most parameters are not used by most motor controllers.

Linked Configurations

An installation such as a synchrotron beamline uses many motors with most associ-

ated with beamline control. Spectrometers used for particular experiments have mo-

tors that aren’t used in other experiments. To avoid having to merge the motor con-

figurations and settings from one set of files to another when the spectrometer is
changed, you can set things up so that a single version of the config and settings files
will describe a number of different spectrometers. Here is how to set up the files:

(1) If you already have several geometry configurations installed, you should
make backup copies of the config and settings files from the current geome-
tries.

(2) If you already have several geometry configurations installed, remove the con-

fig and settings files from all but one of the geometry directories. Save the
config file that has the most motors, as you will have to add motors from the
other geometries to the remaining config file.

(3) Set up hard links in all the geometry directories so that the config and set-

tings in all the geometry directories refer to the same file. For example, if the
files already exist in the fourc directory, use the commands

ln fourc/config surf/config
ln fourc/settings surf/settings

to create hard links in the surf directory. Don’t use symbolic links.

(4) Edit the config file by hand to add new control lines that assign numbers to

the different geometries. These control lines must be before the lines that as-
sign motor information. The format of the geometry control lines is as fol-
lows:

236 ADMINISTRATOR’S GUIDE

GEO0 = common
GEO1 = fourc
GEO2 = surf
GEO3 = fivec
etc.

The parameter GEO0always refers to the motors that are common to all the

geometries. Subsequent lines assign consecutive numbers to the other geome-

tries.

(5) Now run edconf. The motor screen will have a new field that lets you assign a

spectrometer geometry to each motor or to make the motor in common with

all the spectrometers. You can do the same for each scaler on the scaler

screen (as of release 4.03.12).

The hard links must be maintained for the shared config and settings file scheme to

work. You can safely use vi and cp to manipulate the files. However, using mv will

destroy the links, as will some text editors.

When running edconf with a geometry directory as an argument or when invoking
the config macro from spec, use the G command to toggle between displaying all the
motors and scalers in the config file and just those motors and scalers used by the
given geometry.

Security Issues

At some installations, you may wish to prevent ordinary users from accessing se-
lected motors. spec offers several levels of security. The security works with the
UNIX file ownership and protection mechanisms, so it is important that user and
group ownership of the configuration files and file write permission be properly set.

To restrict configuration modification to a single user or group, you must set the write

permission of the diffractometer’s associated config file accordingly. Type
chmod 644 /usr/lib/spec.d/fourc/config to allow only the owner of the file to
modify it. Setting the mode to 664 allows users in the owner’s group to also modify

the file.

There are there basic levels of security for each motor. The first level is the most re-
strictive, as it prevents the motor from being moved and prevents changes to the po-
sition being made in the settings file. The motor position can still be read from the

motor controller, though, and the user angle can still be changed using the chg_off-
set() function (invoked by the set macro). If there is ever a conflict between the
current position and the position in the settings file, such as might happen if the
power was turned off to the motor controller, the controller registers are

ADMINISTRATOR’S GUIDE 237

automatically adjusted to match the position in the settings file without moving the

motor.

The second level of security allows a motor to be moved, but prevents the software

limits from being changed. Not only is the set_lim() command restricted, but also

the chg_dial() command, as a change in the dial position would effectively change

the position of the limits.

The third level offers no security and allows any operation on a motor.

When these motor restrictions are set in the config file, the restrictions apply to ev-

eryone, even the owner of the config file. To move a restricted motor, you must first

change the config file.

Extra Protection

At some spec installations, the administrators need to prevent users from accessing
or modifying the configuration of certain motors. The edconf program supports a wiz-
ard mode that allows such protection. If you type ˆW while running edconf you will be
prompted for the wizard’s password. If you enter it properly, you will be able to select
additional levels of configuration protection.

When running spec, a user who knows the password can gain temporary access to
protected motors via the spec_par("specwiz") function. The standard macros on-
wiz and offwiz provide a convenient implementation.

Since modern UNIX systems forbid unprivileged users access to encrypted passwords,
spec will first look for a readable SPECD/passwd file that contains an entry contain-
ing an encrypted password for a specwiz user. If no such file exists, spec will also
look in /etc/passwd and /etc/shadow, although the former is unlikely to contain en-
crypted passwords and the latter is unlikely to be readable. The spec distribution in-

cludes a wiz_passwd utility, which can be run to create the SPECD/passwd file.

To prevent users from disabling the wizard protections by editing the config file by
hand, you can use file protection features built in to UNIX. One possibility is to make

the edconf program set-user id specadm, change the ownership of the config files to

specadm, and change the modes of the config files to rw−r−−r−− . Do that using com-
mands (as super user) along the following lines:

chown specadm edconf fourc/config surf/config ...
chmod u+s edconf
chmod 644 fourc/config surf/config ...

238 ADMINISTRATOR’S GUIDE

HARDWARE REFERENCE

240 HARDWARE REFERENCE

Introduction

spec includes built-in support for a wide variety of motor controllers, counters,

timers and other data acquisition devices, allowing great flexibility in a site’s hard-

ware configuration. Information on currently supported devices follow. Support for

additional devices is continually being added.

Inter face Controllers and General Input/Output

The interface screen of the configuration editor is selected using the I command. Be-

fore any interfaces have been configured the screen looks like:

Interface Configuration

CAMAC DEVICE ADDR <>MODE <>TYPE
NO

GPIB DEVICE ADDR <>MODE <>TYPE
0 NO

VME DEVICE ADDR <>TYPE
NO

SERIAL DEVICE <>TYPE <>BAUD <>MODE
0 NO
1 NO
2 NO
3 NO

IO PORT ADDR <>MODE NUM
NO
NO
NO
NO

Type ? or H for help, ˆC to quit

The following sections explain the choices for each type of interface. To select a par-
ticular interface, use the arrow keys to move to the cell containing the word NOand
type y for yes and then <return> . For CAMAC, GPIB and VME devices, move the

cursor to the last column and use the < or > keys to select the correct device and then

enter <return> .

HARDWARE REFERENCE 241

CAMAC Controllers

spec supports only one CAMAC controller at a time. The following CAMAC crate

controllers are available:

config file Description

PC_DSP6001 DSP 6001 with PC004 (no driver)

GP_CC488 DSP CC-488 GPIB Crate Controller

CDEV DSP-6001/DCC-11/KS-3912 Boards

CA_JOR73A Jorway 73A SCSI to CAMAC

CA_KS3929_HP KS 3929 SCSI to CAMAC on HP

CA_KS3929 KS 3929 SCSI to CAMAC on Sun

GP_KS3988 KS 3988 GPIB Crate Controller

PC_KSC2926 KSC 2926 with 3922 (no driver)

CA_KSC Kinetic Systems CAMAC driver

To select one, move the cursor to the NObox under CAMACand type y and <return> .
Then move the cursor to the rightmost column and type < or > until the appropriate
controller appears and then enter <return> . Finally, select appropriate parameters
from the other columns.

CAMAC Controllers That Use spec Drivers

config file:

CDEV = device_name INTR|POLL

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/ca00 INTR DSP-6001/DCC-11/KS-3912 Boards

spec drivers are available for the DSP 6001/6002 with PC004 for PC platforms, the
Kinetic Systems 3922 with 2926 for PC platforms, or the Kinetic Systems 3912

CAMAC controller for BSD and Ultrix platforms. The appropriate CSS driver must

be installed in each case. The PC platform controllers may be used in a polled or in-
terrupt-driven mode. In interrupt-driven mode, a CAMAC look-at-me (LAM) will
generate a call to a spec interrupt service routine.

To use the DSP 6001/6002 controllers in interrupt-driven mode, the boards must be

modified to give the module a software programmable interrupt-enable capability.
The modifications involve cutting four traces and soldering four jumper wires on one
of the boards in the 6001/2 module. Contact CSS to obtain the explicit instructions.

No modifications are required to operate the controller in polled mode.

242 HARDWARE REFERENCE

DSP 6001/6002 CAMAC With No Driver

config file:

PC_DSP6001 = base_address

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES 0x240 DSP 6001 with PC004 (no driver)

Use this entry to select the DSP 6001/6002 CAMAC controller on a PC, if you aren’t

using a driver. No interrupt is used in this configuration.

Kinetic Systems 3988 GPIB To CAMAC

config file:

GP_KS3988 = gpib_address INTR|POLL

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES 7 POLL KS 3988 GPIB Crate Controller

Use this configuration for the Kinetic Systems 3988 GPIB-to-CAMAC controller.
This controller may be used in a polled or interrupt-driven mode. In interrupt-driven
mode, a CAMAC look-at-me (LAM) generates a GPIB service request (SRQ), which in
turn, will call a spec interrupt service routine. Interrupt-driven mode is currently
only available with National Instruments GPIB controllers, and only when not using
the cib.o GPIB configuration (see below). If multiple versions of spec are sharing the
controller on the same computer, the controller must be operated in polled mode.

DSP CC-488 GPIB To CAMAC

config file:

GP_CC488 = gpib_address INTR|POLL

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES 7 POLL DSP CC-488 GPIB Crate Controller

This configuration is for the DSP CC-488 GPIB-to-CAMAC controller. This controller
may be used in a polled or interrupt-driven mode. In interrupt-driven mode, a
CAMAC look-at-me (LAM) generates a GPIB service request (SRQ), which in turn,

will call a spec interrupt service routine. Interrupt-driven mode is currently only

available with National Instruments GPIB controllers. If multiple versions of spec

HARDWARE REFERENCE 243

are sharing the controller on the same computer, the controller must be operated in

polled mode.

Jorway 73A SCSI To CAMAC

config file:

CA_JOR73A = device_name

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/sga Jorway 73A SCSI to CAMAC
YES /dev/scsi/1 Jorway 73A SCSI to CAMAC

The Jorway 73A SCSI-to-CAMAC controller is supported on HP 700 Series and linux

platforms. Note, the four-position “piano” switch should be left in the factory configu-

ration, with positions 1, 2 and 3 off, and position 4 on.

Kinetic Systems 3929 SCSI To CAMAC

config file:

CA_KS3929 = device_name

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/sga KS-3929 SCSI to CAMAC
YES /dev/ksc0 KS-3929 SCSI to CAMAC
YES /dev/scsi/1 KS-3929 SCSI to CAMAC

This Kinetic Systems SCSI-to-CAMAC controller is available on SunOS 4.x SBus
platforms, where a CSS provided driver can be installed. On linux and HP 700 Se-
ries workstations, spec provides direct software support. In all cases, this controller

only operates with spec in a polled mode. In addition the software interface avail-

able from Kinetic Systems is supported (see below).

244 HARDWARE REFERENCE

Kinetic Systems CAMAC Software

config file:

CA_KSC = device_name

edconf interfaces screen:

CAMAC DEVICE ADDR <>MODE <>TYPE
YES /dev/rcamac Kinetic Systems CAMAC Driver

Kinetic Systems sells software interfaces for some of their CAMAC controllers on

some UNIX platforms. Presently, only the package for the 3929 SCSI-to-CAMAC con-

troller on the HP700 platform has been used with spec. To use the Kinetic Systems

software, the location of the their object module must be given in response to the

"KSC 3929 SCSI-CAMAC file location" query when running the Install program.

(Note, however, there is no reason to use the rather expensive KSC software for the

3929 on the HP platform as CSS provides bundled support.)

GPIB Controllers

spec works with a variety of GPIB controllers as described below. (In addition, the
Kinetic Systems 3388 CAMAC-to-GPIB controller is available.) Up to four GPIB con-
trollers can be configured simultaneously.

On platforms that implement the System V interprocess communications (IPC) sema-
phore and shared-memory system calls, more than one spec process can share a sin-
gle GPIB controller. For those systems, each spec must have the shared version of
the GPIB controller selected. In the config file, a _L is appended to the module key
word to indicate the shared version. If multiple GPIB controllers are configured, the
controller unit number of the shared controller must be the same in each version of
spec.

spec uses the GPIB controllers at board (as opposed to device) level, which makes it

unlikely that other programs can use a GPIB controller while spec is using it.

HARDWARE REFERENCE 245

National Instruments GPIB with National Instruments Drivers

The National Instruments GPIB boards and drivers should be installed according to

National Instruments instructions. spec communicates with the boards using only

the device node /dev/gpib0.

(On System V PC Platforms, where the GPIB driver is linked into the kernel, and the

kernel is patched using the ibconf program, you should run ibconf directly on the

driver file, so that each time you rebuild a kernel, you won’t need to rerun ibconf.

Thus, you might run

ibconf /etc/conf/pack.d/ib2/Driver.o

after the driver has been installed.)

When you do configure /dev/gpib0 with the ibconf program, set the controller pri-

mary address to 0, the secondary address to none, board-is-system-controller mode to

yes and disable-auto-serial-polling mode to yes.

Other board configuration parameters are programmed by spec each time it is run,
thus overriding any values you may set using the ibconf program. Those parameters
are: timeout setting, EOS byte, terminate-read-on-EOS mode, type of compare on
EOS, set-EOI-w/last-byte-of-write mode and UNIX signal. The special nodes that may
be created for each individual device by the National Instruments installation pro-
gram are not used at all.

National Instruments GPIB with cib.o

config file:

PC_GPIBPC4 = device_name
PC_GPIBPC4_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst with cib.o
YES /dev/gpib0 Nat Inst with cib.o (shared)

National Instruments provides a C language interface to its driver on most platforms

in a file called cib.c. For some older versions of the National Instruments driver, spec
has built-in C code that can be used instead of the National Instruments C interface.
When using the National Instruments cib.o file, it isn’t possible for GPIB devices that
generate service requests (SRQ) to generate interrupts. Such devices must be used in

polled mode.

In addition to specifying this choice in the config file, the location of the cib.o file must
be entered when spec is installed. (See Page ? in the Administrator’s Guide.

246 HARDWARE REFERENCE

Any of the National Instruments boards (except the DEC MicroVax board) can be

used with the cib.o file.

National Instruments GPIB on linux

config file:

PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0/master National Instruments GPIB
YES /dev/gpib0/master Nat Inst GPIB (shared)

On linux platforms, there is a freely available GPIB driver for National Instruments

boards available by anonymous ftp from the site koala.chemie.fu-berlin.de in the

directory /pub/linux/LINUX-LAB/IEEE488. That driver should be installed and
configured according to the documentation in the driver package. Note, however, that
the DMA option in the driver installation should not be selected, as the implementa-
tion of DMA in the driver is notoriously flakey. The only part of the driver package
needed by spec is the driver/gpib0.o module. spec does not use any of the applica-
tion library included with the driver package. The file /etc/gpib.conf associated with
the application library, so also is not used by and does not influence spec. Also, spec
communicates with the driver directly through the /dev/gpib0/master device node.
No other device nodes are used.

National Instruments GPIB-ENET

config file:

PC_GPIBPC5 = hostname
PC_GPIBPC5_L = hostname

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES gpib0 Nat Inst GPIB-ENET
YES gpib0 Nat Inst GPIB-ENET (shared)

spec must be linked with the National Instruments cib.o module that comes with the
GPIB ethernet device. On the edconf interfaces screen, enter the name of the board
as indicated by the National Instruments ibconf utility.

HARDWARE REFERENCE 247

National Instruments PCII GPIB on PC UNIX System V Platforms

config file:

PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst GPIB PCII
YES /dev/gpib0 Nat Inst GPIB PCII (shared)

The PCII board is an old model, but is still supported by spec. This selection uses

spec’s built-in code. The cib.o file configuration described earlier may also be used.

National Instruments AT-GPIB on PC UNIX System V Platforms

config file:

PC_GPIBPC2 = device_name
PC_GPIBPC2_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst AT-GPIB
YES /dev/gpib0 Nat Inst AT-GPIB (shared)

The AT-GPIB board is a current model. This selection uses spec’s built-in code. The
cib.o file configuration described earlier may also be used.

National Instruments GPIB on SCO UNIX and IBM AIX Platforms

config file:

PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 National Instruments GPIB
YES /dev/gpib0 Nat Inst GPIB (shared)

spec’s built-in code should work with SCO UNIX, IBM PS/2 and IBM RS/6000 plat-
forms with this configuration choice. If new versions of the National Instrument
drivers don’t work, switch to the cib.o file configuration, described previously.

248 HARDWARE REFERENCE

National Instruments SB-GPIB Ver 1.3 on SunOS 4.x Platforms

config file:

PC_GPIBPC = device_name
PC_GPIBPC_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst SB-GPIB Ver 1.3
YES /dev/gpib0 Nat Inst SB-GPIB Ver 1.3 (shared)

This old version of the driver is supported with built-in code.

National Instruments GPIB 1024-1S on SunOS 4.x Platforms

config file:

PC_GPIBPC2 = device_name
PC_GPIBPC2_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst GPIB 1014-1S
YES /dev/gpib0 Nat Inst GPIB 1024-1S (shared)

An old version of the driver for this board is supported with built-in code.

National Instruments SB-GPIB Ver 2.1 on SunOS 4.x Platforms

config file:

PC_GPIBPC3 = device_name
PC_GPIBPC3_L = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/gpib0 Nat Inst SB-GPIB Ver 2.1
YES /dev/gpib0 Nat Inst SB-GPIB Ver 2.1 (shared)

This old version of the driver for this board is supported with built-in code.

HARDWARE REFERENCE 249

National Instruments GPIB on DEC MicroVax

config file:

PC_GPIB11 = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/ib DEC GPIB11V-2 For Q-Bus

National Instruments distributes the driver source code for this module and plat-

form. The driver is unlikely to updated, so spec should continue to work with this

module and platform indefinitely. No cib.o file is available for this platform.

HP SICL GPIB On HP Platforms

config file:

PC_SICL_H = sicl_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES hpib HP SICL GPIB

This configuration choice supports HP’s GPIB using HP’s SICL interface library.
When the spec Install script is run, the question regarding GPIB SICL must be an-
swered with “yes”, and a libsicl.a or libsicl.sl must be available on the system for the
SICL GPIB board to be available. If using the HP E2050 LAN/HP-IB Gateway, the
device name is of the form lan [hostname]: interface where lan is the symbolic
name for the device set in the /usr/pil/etc/hwconfig.hw file, hostname is the host
name or IP address of the gateway and interface is the interface as set for the
host-name parameter in the gateway on-board configuration.

IOtech SCSI To GPIB On HP Platforms

config file:

PC_SICL_H = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES /dev/IOtech1 IOtech SCSI488/H SICL GPIB

This configuration uses IOtech’s SCSI-to-GPIB interface on an HP 700 Series work-

station with the IOtech SICL software. When the spec Install script is run, the flags

required to load the GPIB SICL library must be entered. Note, CSS has available a

250 HARDWARE REFERENCE

modified version of the standard libsicl.a that doesn’t use the ieee488 daemon pro-

gram, but does allow multiple processes to access the GPIB controller. Contact CSS

to obtain the modified version of the library.

IOtech SCSI To GPIB on Sun Platforms

config file:

PC_IOTECH = device_name

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES <eee488/ieee IOtech SCSI488/S GPIB

Use this configuration for the IOtech SCSI-to-GPIB on a SunOS 4.x platform.

The full name of the default device is /dev/ieee488/ieee. (The edconf program only

displays the last twelve characters of long device names unless the cursor is on the
device name cell.)

Scientific Solutions IEEE-488 on PC Platforms

config file:

PC_TEC488 = base_address
PC_TEC488_L = base_address

edconf interfaces screen:

GPIB DEVICE ADDR <>TYPE
YES 0x300 Scientific Solutions IEEE-488
YES 0x300 Scien Solut IEEE-488 (shared)

Only the Scientific Solutions (Tecmar) GPIB board (old style) is currently supported
by spec (not the GPIB-LM model). Very old models of the board do not work. The

card is accessed completely through user-level I/O. No kernel driver is needed.

HARDWARE REFERENCE 251

Kinetic Systems 3388 CAMAC-To-GPIB Module

config file:

CA_KS3388 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 KS3388 KS 3388 GPIB Interface

When using the Kinetic Systems 3388 GPIB-to-CAMAC module, you must set the

talk/listen address switch inside the module to correspond to address zero.

VME Controllers

National Instruments VME with National Instruments Drivers

config file: edconf

PC_NIVME = /dev/null

interfaces screen:

VME DEVICE ADDR <>TYPE
YES National Instruments VME

spec supports the National Instruments VXI-SB2020 on SunOS 4.1 and the VXI-
AT2023 on System V PC platforms. The NI drivers must be installed, and the loca-
tion of the NI cvxi.o must be specified when spec is installed.

The National Instruments software needs several patches when used on SVR3 PC
platforms. Contact CSS for details.

Bit 3 Model 403 ISA-VME

252 HARDWARE REFERENCE

Bit 3 Model 616/617 PCI-VME

Bit 3 Model 487-1 with Model 933 Driver Software

Bit 3 Model 466-1/467-1 with Model 944 Driver Software

Serial (RS-232C) Ports

config file:

SDEV_# = device_name baud_rate tty_modes

edconf interfaces screen:

SERIAL DEVICE <>TYPE <>BAUD <>MODE
0 YES /dev/ttya1 <> 9600 cooked igncr
1 YES /dev/ttya2 <> 2400 raw
2 NO
3 NO

Serial ports for use with the user-level ser_get() and ser_put() built-in functions
are also selected on the interfaces screen. The device name, baud rate and serial line
modes are selected for up to four serial devices. The number of the device is used as
the first argument to the ser_put() and ser_get() functions. Available tty modes
are either raw or cooked, with cooked mode also having noflow, igncr (a no-op on non-
System V systems) and evenp or oddp options.

The <>TYPE field allows serial devices connected through special software servers
used at ESRF or with EPICS to be selected. For normal serial devices, the field

should contain the characters <> . See the Reference Manual for a description of the
spec functions that access the serial ports.

Generalized CAMAC I/O

config file:

CA_IO = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 I O 0 Generalized CAMAC I/O

HARDWARE REFERENCE 253

CAMAC modules configured for Generalized CAMAC I/O can be accessed using

spec’s ca_get() and ca_put() functions. (See page 150 in the Reference Manual.)

The module address for those functions is the unit number on the CAMAC configura-

tion screen. Note that even more generalized access is available using the ca_fna()
function. (See page 150 in the Reference Manual.) Arbitrary commands can be sent

to any CAMAC module, whether or not the module is listed in the config file.

PC Port Input/Output

config file:

PC_PORT_# = base_address number_of_ports read_write_flag

edconf interfaces screen:

IO PORT ADDR <>MODE NUM
YES 0x300 Read 1
YES 0x310 R/W 4

NO
NO

On ISA bus systems on 80x86-compatible systems and on HP 700 platforms with
E/ISA bus support, the ports available for the built-in port_get() , port_getw() ,
port_put() and port_putw() functions are configured on the interfaces screen. The
board’s hexadecimal base address is given, along with the number of contiguous 8-bit
ports (maximum of 16) that can be accessed. The ports can be configured for read-
only access or for read-write access. Be careful not to select port addresses associated
with standard PC hardware such as the video board or the hard disk! Also be sure to
include enough 8-bit ports to handle 16-bit word access, if that is how you will be us-
ing the ports. On the HP platforms, a config file must also be set up in the /etc/eisa

directory using the HP eisa_config utility.

254 HARDWARE REFERENCE

Motor Controllers

Motor Controllers

Advanced Control System MCB (GPIB and Serial)

config file:

RS_MCB = device_name baud_rate number_of_motors
GP_MCB = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES 6 4 Advanced Control System MCB (GPIB)
YES /dev/tty00 <> 9600 4 Advanced Control System MCB (Serial)

When used on the serial interface, the MCB appears to output characters using even
parity in spite of the board’s jumpers being set to generate no parity. To accommo-
date that hardware idiosyncrasy, spec opens the port using even parity. If future
versions of the MCB generate parity properly according to the jumper settings, the
jumpers should be set for even parity to accommodate spec.

Advanced Control System MCU-2 (Serial)

config file:

RS_MCU = device_name baud_rate number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/ttyS1 <> 9600 12 Advanced Control System MCU

On the Motors screen of the configuration editor, one can select among MCU, MCU_E,
MCU_Hand MCU_Ofor the controller type.

The MCU_Ocontroller type indicates that the controllers have the old-style firmware

(which doesn’t implement the # start character for message sent to the controllers),
so that spec will not test first for the new-style firmware, thus avoiding timeouts.

The MCU_Hcontroller type is for a special version of the controller which includes a

hardware tie-in for a Heidenhain encoder. For such controllers, the motor_par("en-
coder_step_size") parameter is relevant in order to set the ratio between the Hei-
denhain encoder readings and the MCU-2 step size. The default value is 131072 /

HARDWARE REFERENCE 255

360.

The MCU_Etype indicates an encoder is used. However, currently, there is no differ-

ence in the software whether MCU_Eor MCUis selected.

Please note, many users have had problems establishing initial communication be-

tween the MCU-2 controllers and their computers. The problem is almost always re-

lated to the cable. Standard RS-232C cables do not appear to work. A custom cable

wired according to the diagram in the MCU-2 manual seems to be needed. Note also,

that the connections for pins 2 and 3 may need to be swapped from what is shown in

the manual. Be prepared to try the cable both ways before adding the final touches.

Command pass through for the MCU-2 controllers is available using the following:

motor_par(motor , " send", cmd) — Sends the string cmd to the MCU channel associ-

ated with motor . For example, set cmd to "J500" to set the jog rate for motor
to 500 steps per second.

motor_par(motor , " read", cmd) — Sends the string cmd to the MCU channel associ-
ated with motor , as above, and returns a string containing the response.

Compumotor 3000 (GPIB and Serial)

config file:

RS_CM3000 = device_name baud_rate number_of_motors
GP_CM3000 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 <> 9600 4 Compumotor 3000 (Serial)
YES 6 4 Compumotor 3000 (GPIB)

Use of this old motor controller is not recommended!

Compumotor 4000 (GPIB and Serial)

config file:

RS1_CM4000 = device_name baud_rate number_of_motors
RS2_CM4000 = device_name baud_rate number_of_motors
GP_CM4000 = gpib_address number_of_motors

edconf devices screen:

256 HARDWARE REFERENCE

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 <> 9600 4 Compumotor 4000 (Serial port 1)
YES /dev/tty00 <> 9600 4 Compumotor 4000 (Serial port 2)
YES 3 4 Compumotor 4000 (GPIB)

The Compumotor 4000 can be used on either an RS-232 or GPIB interface. You must

program the RS-232 baud rate or the GPIB address using the Compumotor front

panel controls. You should consult the Compumotor manual for details, but in brief,

the procedure is as follows. You must first enter the ACCESS code (the factory de-

fault is 4000). You then choose the IMMED function, and then the DEFINE GPIB

ADDR statement to select the the GPIB address. Alternatively, choose the IMMED

function, and the the RS232 PORT1 or RS232 PORT2 statement to select the port

and configure the baud rate for the RS-232 interface.

There are many other configuration options with this controller. Other than the

GPIB address and the baud rate, you should probably not change any of these others.

You can reestablish the factory defaults using the RESET function from the main

menu.

Output pins 46 or 47 on the programmable output connector can be used to gate a
counter during powder-mode scans. While the powder-mode motor is moving during
these scans, spec sets pin 46 high and pin 47 low. Use the one appropriate for your
particular counter. To gate the Ortec 994 counter/timer, for example, pin 46 and an
even-numbered pin (all are logic ground) are connected to the front panel enable BNC
connector on the Ortec module.

Compumotor AX (Serial)

config file:

RS_CMAX = device_name baud_rate number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 <> 9600 4 Compumotor AX Motor Controller (Serial)

Command Pass Through

Command pass through is available using the following functions. Command pass
through should be used with caution to avoid interfering with the built-in program-

ming commands spec sends to the controllers.

motor_par(motor , " send", cmd) — Sends the string cmd to the motor channel associ-
ated with motor .

HARDWARE REFERENCE 257

motor_par(motor , " read", cmd) — Sends the string cmd to the motor channel associ-

ated with motor , as above, and returns a string containing the response.

Compumotor SX (Serial)

DSP E250 12-Bit DAC as Motor Controller (CAMAC)

config file:

CA_E250 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 E250 0 DSP E250 12-Bit D/A as Motor Control

Some spec users use this DAC to control piezo-electric motion devices. Commanding
such a device to move from spec results in an instantaneous change in the output
voltage of the DAC.

DSP E500 Stepper Motor Controller (CAMAC)

config file:

CA_E500 = slot_number
CA_E500M = slot_number
CA_IOM1 = slot_number
CA_IOM2 = slot_number
CA_IOM3 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 E500 0 DSP E500 Stepper Motor Controller
2 I OM1 BiRa 2601 I/O For E500 Multiplexing
3 I OM2 F16,A0 I/O For E500 Multiplexing
4 I OM3 F16,A1 I/O For E500 Multiplexing

Selecting one of the three I/O module configurations above allows spec to multiplex

an E500 motor channel. Currently only one channel of one E500 can be multiplexed.
However, up to sixteen motors can be multiplexed on that channel. Contact CSS for
additional information on the multiplexing circuitry required.

258 HARDWARE REFERENCE

Huber SMC 9000 (GPIB)

config file:

GP_HUB9000 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES 6 8 Huber 9000 Motor Controller (GPIB)

Note, spec does not support the RS-232C interface for this controller, as CSS was un-

able to make it work reliably with spec. Note also, a feature of this motor controller

is that if a limit switch is hit, communication with the remote computer is shutdown

so that one must manually move the motor off the limit and reset the controller in or-

der to reestablish remote communication.

Inel XRGCI as Motor Controller (Serial)

config file:

RS_XRGCI_M = device_name baud_rate number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/ttyh3 <> 4800 3 Inel XRGCI as Motor Controller

Joer ger SMC Stepper Motor Controllers (CAMAC)

config file:

CA_SMC = slot_number
CA_KS3640M = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 SMC 0 Joerger Single Motor Controller
2 KS3640M 0 KS 3640 Counter with Joerger SMC

Joerger controller models SMC-L, SMC-24 and SMC-LP can be used with spec.
None of these models contain absolute motor position registers, so they are generally

supplemented with additional CAMAC counter modules to keep track of motor posi-

tion. spec supports the Kinetic Systems 3640 Up/Down Counter for this purpose.
This module has four 16-bit counters that must be connected in series to form two
32-bit counters. One 3640 module is thus needed for each two SMC modules.

HARDWARE REFERENCE 259

The SMC controllers can be used without a supplemental counter, but spec will not

do as well in keeping track of absolute motor positions.

The Joerger controllers have no provision for a soft abort. If you type ˆC to abort

moving, the controller will simply stop sending pulses to the motors. Inertia may

cause the motors to continue to turn a bit, and absolute positions will be lost. The

only work around for this problem is to keep motor velocities low.

The model SMC-LP allows programmable motor speed and acceleration. According

to the module’s documentation, if the internal frequency adjustments are at the fac-

tory settings, motor speed can be programmed between 50 and 2000 steps per second,

while acceleration time can be varied from 20 to 2000 msec. For the other models,

these parameters are set manually using potentiometers on the module — values en-

tered in the config file are ignored.

Klinger MC-4 Stepping Motor Controller

config file:

RS_MC4 = device_name baud_rate number_of_motors
GP_MC4 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 <> 4800 4 Klinger MC4 (Serial)
YES 3 4 Klinger MC4 (GPIB)

The Klinger MC-4 can be used on either an RS-232 or GPIB interface.

Back panel switches SW, SX, SY and SZ should each have locations 1 and 2 up and
locations 3 and 4 down (spec does not currently support an origin switch, top zero or
encoders). If you use the MC-4 with a GPIB interface, back panel switch S3 location
4 should be down, indicating a line feed terminator. Use switch S1 locations 1 to 5 se-

lect the GPIB address.

If you use the MC-4 with an RS-232 interface, set back panel switch S2 locations 1 to
3 to select the baud rate. Location 4 should be up, indicating software handshake.

Switch S3 location 1 should be down and locations 2 and 3 up, to set 8 bit data words

with 2 stop bits. Switch S3 location 4 should be down, indicating a line feed termina-
tor.

You must connect certain pins together on the general purpose I/O connector on the

back panel of the MC-4 to use the MC-4 with spec. Wire one end of a 1K to 10K ohm

resistor to pin 35 (+5V). The other end should be connected to both pins 26 (B8) and
29 (E3). Pin 26 is an programmable output pin, and pin 29 is an external input.
spec sets the state of pin 26 at the beginning of each move (which may involve all the

260 HARDWARE REFERENCE

motors on the board) and clears the state of the pin at the end of the move. The sta-

tus of pin 29 is read to determine when all activity, including backlash, is completed.

The connection to pin 35 (+5V) is necessary to pull up the output.

Output pins 24 or 25 on the general purpose I/O connector can be used to gate a

counter during powder-mode scans. While the powder-mode motor is moving during

these scans, spec sets pin 24 high and pin 25 low. Use the one appropriate for your

particular counter. To gate the Ortec 994 counter/timer, for example, pin 24 and pin

36 (logic ground) are connected to the front panel enable BNC connector on the Ortec

module.

Kinetic Systems 3112 12-Bit DAC as Motor Controller (CAMAC)

config file:

CA_KS3112 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 KS3112 0 KS 3112 12-Bit D/A as Motor Control

Some spec users use this DAC to control piezo-electric motion devices. Commanding
such a device to move from spec results in an instantaneous change in the output
voltage of the DAC.

Micro-Controle IP28 (GPIB and Serial)

config file:

RS_IP28 = device_name baud_rate number_of_motors
GP_IP28 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 <> 9600 4 Micro-Controle IP28 (Serial)
YES 6 4 Micro-Controle IP28 (GPIB)

Code for this motor controller was developed by a spec user. If new users plan on us-

ing this controller, please contact CSS first.

HARDWARE REFERENCE 261

MicroControle SIX19 (Serial)

config file:

RS_SIX19 = device_name baud_rate number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES 13 MicroControle SIX19

Missouri University Research Reactor Motor Controller (GPIB)

config file:

HW_MURR =number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES 13 Missouri Research Reactor Motors

edconf motor screen:

Number: <>Controller 0: MURR_E 1: MURR_E 2: MURR 3: MURR
Unit/Channel 0/1 0/2 0/3 0/4
Name Two Theta Theta Chi Phi
Mnemonic tth th chi phi

The University of Missouri Research Reactor uses custom motor controllers. Each
channel of the motor controller requires one GPIB address. The GPIB address is set
using the channel number in the required unit/channel configuration on the motor
screen of the configuration editor. The unit number is not relevant for these motors.

The controller type MURR_Eor MURRis selected depending on whether or not the con-
troller channel uses an encoder.

There are several unique parameters associated with each motor channel. The pa-
rameters assume default values when the controllers are powered up. Alternate val-
ues can be set in the config file that will be programmed by spec. The values are

Name Parameter Name Power-On Value

Modulo Generic Parameter 1 360000
Grain Generic Parameter 2 5

Direction Generic Parameter 3 1

Drive Mode Generic Parameter 4 1
Cut Point Generic Parameter 5 0

For the modulo parameter, the value 360000 is appropriate for rotation stages. For

262 HARDWARE REFERENCE

translation stages, the maximum value (999999?) would be appropriate. The grain

parameter is a multiplier for the steps sent to the motor by spec and should be sim-

ply related to a gear reducer value. The direction parameter should be set to zero to

reverse the direction of the motor so that its position agrees with the controller dis-

play. The drive-mode parameter changes the meaning of the output signals. For a

value of one, the output signals are count-up/count-down. For a value of zero, the

output signals are step/direction.

The cut-point parameter allows negative positions to be reported by spec, even

though the controller only reports positive positions. Positions reported by spec will

be between the cut point and the cut point plus the modulo parameter multiplied by

the step size parameter. For a module of 360000 and a cut point of −180, positions

will be between −180 and +180, for example.

New Focus Model 8732 Picomotor Controller (GPIB and Serial)

config file:

RS_NF8732 = device_name baud_rate number_of_motors
GP_NF8732 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 9600 4 New Focus Picomotor 8732 (Serial)
YES 6 4 New Focus Picomotor 8732 (GPIB)

Each New Focus Picomotor controller unit has five card slots available. Each card
has four connectors, and each connector can control up to three channels. The slot,
connector and channel numbers need to be encoded in the configuration file by enter-
ing unit/channel information with the configuration editor. The unit number selects
which Picomotor controller. The channel number selects the slot/connector/channel

number of the controller encoded as XYZ, where the slot number is 1 <= X <= 5, the
connector is 1 <= Y <= 4 and the channel is 1 <= Z <= 3.

The only parameter from the config file used to program these controllers is the

steady-state rate, which is sent to the controller as the pulse frequency.

The New Focus Picomotors are unlike most motor controllers in that there is no way
to read the motor positions, and no way to know how far the motors move when com-
manded. spec attempts to guess how far the motor has moved if the positions are

read while the motor is active, or if the move was aborted or stopped, based on the

elapsed time of the move and the pulse frequency programmed into the controller.
However, the positions reported by spec for the New Focus controllers should not be
taken too seriously.

HARDWARE REFERENCE 263

The motor controller can only move 65,535 steps at a time. For larger moves, spec
will automatically send 65,535 steps at a time until the complete move is performed.

Only the up-to-three motors on the same connector can be moved simultaneously.

spec prints an error message if you to try to move a motor on a one connector while

motors on another connector are active. (The moves could be automatically queued

in software if users think such additional code development is warranted.)

Note also, the commands chg_dial(mne, " lim+") and chg_dial(mne, " lim−") can

be used to start continuous moves, which can be stopped either with ˆC or the stop()
function. Please beware also, there is no limit switch capability with this controller,

so moves must be stopped by user intervention.

Command pass through is available using the following functions.

motor_par(motor , " send", cmd) — Sends the string cmd to the New Focus channel as-

sociated with motor .

motor_par(motor , " read", cmd) — Sends the string cmd to the New Focus channel as-
sociated with motor , as above, and returns a string containing the response.

The following special commands are also available:

motor_par(motor , " always_address", mode) — By default, spec currently prefixes
each command sent to the controller with an eleven-character channel-select
instruction. Communication can be made more efficient by turning off the
"always_address" feature by calling this function with mode set to 0. With
the mode off, the channel-select instruction is only sent when needed. The rea-
son for always sending the channel-select information is to avoid spec losing
track of the current channel in the event a user manually switches the con-
troller to local mode.

motor_par(motor , " was_local") — This command will force spec to issue a channel-
select instruction for the next command, allowing recovery after manually

switching the controller to local mode when the "always_address" mode is off.

Newport (Klinger) Motion Master 2000/3000 (GPIB, Serial and PC Board)

config file:

RS_MM2000 = device_name baud_rate number_of_motors
RS2_MM2000 = device_name baud_rate number_of_motors
GP_MM2000 = gpib_address number_of_motors
PC_MM2000 = base_address number_of_motors

edconf devices screen:

264 HARDWARE REFERENCE

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 9600 4 Newport MM2000/3000 (Serial)
YES /dev/tty00 9600 4 Newport MM2000/3000 (Daisy Chain)
YES 6 4 Newport MM2000/3000 (GPIB)
YES 0x280 4 Newport MM2000 (AT bus)

Optional parameters:

MOTPAR:dc_proportional_gain
MOTPAR:dc_derivative_gain
MOTPAR:dc_integral_gain
MOTPAR:dc_integration_limit
MOTPAR:dc_sampling_interval
MOTPAR:dc_following_error
MOTPAR:home_base_rate
MOTPAR:home_slew_rate
MOTPAR:home_acceleration
MOTPAR:slop

The Newport (formerly Klinger) MM2000 and MM3000 motor controllers are sup-

ported by spec on both RS-232C and GPIB interfaces. The MM2000 is also sup-
ported on the ISA bus interface. On the serial interface, spec supports the daisy
chaining available on the MM2000 and MM3000 controllers. All these controllers
can be used both with DC motors (with encoders) and with the 1.5M-type stepper mo-
tors.

Newport Motion Master 4000/4005 (GPIB and Serial)

config file:

RS_MM4000 = device_name baud_rate number_of_motors
GP_MM4000 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 9600 4 Newport MM4000/4005 (Serial)
YES 6 4 Newport MM4000/4005 (GPIB)

Optional parameters:

MOTPAR:dc_gain
MOTPAR:dc_damping_constant
MOTPAR:dc_integration_constant
MOTPAR:dc_following_error
MOTPAR:home_slew_rate
MOTPAR:home_acceleration
MOTPAR:slop

Before using the MM4000/4005 with spec, you need to set the communication pa-
rameters using the front panel buttons and display. The default communication

HARDWARE REFERENCE 265

timeout of 0.5 seconds should be fine. Choose CR as the communication terminator

for both GPIB and RS-232C interfaces. The SRQ feature of the GPIB interface is not

used by spec, so the IEEE SRQ setting must be set to NO. For the RS-232C interface,

the factory defaults for a parity setting of none, a word length of 8 bits and a stop-bits

setting of 1 bit should be appropriate.

NSLS Brand MMC32 Controller (GPIB)

config file:

GP_MMC32 = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES 5 32 NSLS Brand MMC32 Controller (GPIB)

Oregon Micro Systems (PC Board and VME)

config file:

PC_OMS = device_name number_of_motors INTR|POLL
PC_OMSP = base_address number_of_motors POLL
PC_OMSP58 = base_address memory_address number_of_motors POLL
PC_OMSV = VME_address number_of_motors IRQ_number |POLL
PC_OMSV58 = VME_address number_of_motors IRQ_number |POLL

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/oms00 INTR 4 Oregon Micro Systems PCX/38/39
YES 0x330 POLL 4 Oregon Micro Systems PCX/38/39 polled
YES 0xe000 0x300 POLL 4 Oregon Micro Systems PC58 polled
YES 0xfc00 IRQ5 8 Oregon Micro Systems VME8
YES 0xf000 POLL 8 Oregon Micro Systems VME58

spec currently supports PC board and VME module Oregon Micro Systems motor

controllers.

For the PC versions of spec, the PCX, PC38 or PC39 models may be used in two, four,
six or eight motor configurations. (Note, the newer PC34 and PC48 models should be

used with the PCX/38/39 configuration.) spec can operate with a CSS-supplied

driver (on certain platforms) or completely from user level using I/O port polling. The
driver does require a dedicated PC interrupt, and at present, is limited to support of
only one board. If I/O port polling is used, spec allows use of multiple boards.

266 HARDWARE REFERENCE

The driver is contained in the file oms.c in the drivers subdirectory of the spec distri-

bution. See the README file in the that directory for instructions on installing the

driver into the UNIX kernel.

There is no driver for the PC58 board. It is only supported in polled mode.

For VME, the VME8, VME44 and VME58 models are supported. The VME8 operates

eight motors, while the VME44 operates four motors with encoders, although soft-

ware options for encoders are not currently implemented in spec. Multiple OMS

VME motor controllers can be used simultaneously and are generally operated in

polled mode. Interrupt-driven mode is currently only supported with the National

Instruments MXI-VXI controllers.

OMS motor controllers can have from two to eight motors. spec numbers the motors

the OMS manuals designate X , Y , Z , T , U, V , R and S as 0 through 7, in that order.

The first example above selects the PC board with the driver node /dev/oms00. The

driver may be used in either interrupt or polled mode. Interrupt mode means the
spec program will be interrupted when motors complete their motions or hit a limit.
In polled mode, the wait() function must be called repeatedly to check the status of
the motor. Interrupt mode generally gives better performance, although in earlier
versions of spec, software problems could be overcome by using polled mode. A PC
interrupt is always required when the driver is used, even when polled mode is se-
lected.

The second example selects the PC board with I/O port polling, with the board’s base
address at 0x330 , and with four motors on the board.

The third example selects the PC58 board at I/O port 0x300 . The PC58 also require
4,096 bytes of low memory. The example configuration with the address entered as
0xE000 in the DEVICE column selects a real memory address of 0xE0000 , as the
value in the configuration is multiplied by 16.

The fourth example selects the VME8 and VME44 modules, with the board’s A16
base address jumpered at 0xFC00 and with the VME interrupt request jumpered for
IRQ5 . Any of the VME IRQ vectors may be selected as can be polled mode. If more

than one VME OMS controller is being used, all must be in polled mode or all must

use interrupts. Different boards may use the same interrupt, though.

The last example selects the VME58 model. Note, this model requires 4096 bytes of
A16 address space, so valid addresses have one hexadecimal digit followed by three

zeroes.

On the motor screen (M) of the configuration editor, all of the OMS controllers use the
symbol OMSor OMS_Ein the controller field of the screen. The latter indicates the mo-
tor is being used with an encoder.

HARDWARE REFERENCE 267

Special Commands

The following special commands are available through the motor_par() function.

The two letter commands are direct implementations of commands described in the

OMS manual. Refer to that manual for more information. Not all commands are

available on all versions of the OMS controllers or on all firmware versions for a par-

ticular controller.

motor_par(motor , " PA", mode) — If mode is 1, the controller turns motor power on

before each move and off after the move (assuming motor power is controlled

by the auxiliary output pins). If mode is 0, motor power stays on.

motor_par(motor , " SE", msec) — Sets the settling time in milliseconds to be used be-

fore the power is reduced in PA mode.

motor_par(motor , " AF") — Turns auxiliary power off.

motor_par(motor , " AN") — Turns auxiliary power on.

motor_par(motor , " BH", mask) — Sets general purpose output pins high, according to
which of bits 0-13 in mask are set.

motor_par(motor , " BL", mask) — Sets general purpose output pins low, according to
which of bits 0-13 in mask are set.

motor_par(motor , " BX") — Returns the state of the general purpose input pins. A
one in any binary position in the value returned indicates that the correspond-
ing pin is low.

motor_par(motor , " RB") — Returns the direction of the general purpose I/O lines.
Output bits return a one, while input bits return a zero.

Command Pass Through

Command pass through is available using the following functions. Command pass

through should be used with caution to avoid interfering with the built-in program-

ming commands spec sends to the OMS controllers.

motor_par(motor , " send", cmd) — Sends the string cmd to the OMS channel associ-
ated with motor . For example, set cmd to "LF" to disable hardware limits on

the associated motor.

motor_par(motor , " read", cmd) — Sends the string cmd to the OMS channel associ-
ated with motor , as above, and returns a string containing the response. For
example,

268 HARDWARE REFERENCE

30.FOURC> print motor_par(tth, "read", "RP")
240000

31.FOURC>

results in the string "AX RP\n" being sent to the controller.

Asynchronous Surface Scanning

The following commands implement a special asynchronous, two-dimensional scan-

ning mode available with newer versions of the OMS firmware. The scan is in the

form of a repeating square wave, as illustrated below.

----- ----- -----
| | | | | |

d| | | | | |
y| | | | | |

| | | | | |
o - ---- ----- ---> dx

The scan starts at the point o , as specified with the commands below, and continues
in the x and y directions in the range as specified with the commands below. At the
end of the range, the motors are returned to the starting position and the scan is re-
peated.

Two motors must be configured with the mnemonics dx and dy in order for the asyn-
chronous scanning mode to be available. When not in scanning mode, these motors
may be moved normally.

Once started, the scanning will continue until explicitly stopped either with the
stop_scan command (shown below), with a ˆC typed at the keyboard or with a sync
command (which aborts the motors, but doesn’t update spec’s positions). While scan-
ning, the wait() function will not indicate these motors are moving. The getangles
command will, however, return the current positions of these motors.

When the dx and dy motors are scanning, the remaining motors may be moved inde-

pendently.

motor_par(motor , " x_start", value) — Sets the starting position for the dx motor.

motor_par(motor , " x_range", value) — Sets the extent of the motion in the x direc-

tion.

motor_par(motor , " x_stepsize", value) — Sets the size of each step in x. The num-
ber of steps is determined by dividing this number into the range for x.

motor_par(motor , " y_start", value) — Sets the starting position for the dy motor.

HARDWARE REFERENCE 269

motor_par(motor , " y_range", value) — Sets the extent of the motion in the y direc-

tion.

motor_par(motor , " start_scan") — Starts the asynchronous scan.

motor_par(motor , " stop_scan") — Stops the asynchronous scan.

Oriel Encoder Mike Controller 18011 (Serial)

config file:

RS_18011 = device_name baud_rate number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/ttyh3 <> 4800 3 Oriel Encoder Mike Controller 18011

Oriel Encoder Mike Controller 18092 (Serial)

config file:

RS_18092 = device_name baud_rate number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/ttyh3 <> 4800 3 Oriel Encoder Mike Controller 18092

Phytron IXEα-C (GPIB and Serial)

config file:

RS_IXE = device_name baud_rate number_of_motors
GP_IXE = gpib_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 9600 2 Phytron IXE (Serial)
YES 6 4 Phytron IXE (GPIB)

Finding Reference Positions

The Phytron’s axis initialization command "0" , which searches for the negative limit
switch as described in the Phytron manual, is sent to a specific motor when the

chg_dial() function is invoked with either the "home+" or "home-" arguments. The

270 HARDWARE REFERENCE

free-axis-displacement commands "L+" and "L-" are sent with the "lim+" and

"lim-" arguments, respectively.

There is no fixed hardware signal for a home switch on the Phytron controller, but

there are twelve digital inputs available on the input connector. There is also a com-

mand which will perform a relative move at the base rate until one of the inputs goes

high or low or the magnitude of the move is reached. There are four parameters in

this command: the direction of the move, the magnitude of the move, the binary in-

put number and the sense of the input switch. All four parameters are set by enter-

ing a string as generic parameter 1 on the optional motor parameter screen of the

configuration editor. (Get there by typing mtwice from the standard motor parameter

screen.) The string you enter will be sent to the motor when the "home" argument is

used with the "chg_dial()" function. The string is the actual command sent to the

Phytron, and is of the form

S mag vE nn D

where S is a + or a − for the sign of the move, mag is the magnitude of the move (maxi-
mum of 65535 steps), nn is the input number (01 through 12) and D is the sense of the
input where 0 means the motor stops if the input goes off and 1 means the motor
stops if the input goes on. For example,

+200vE071

would command the motor to move no more than 200 steps in the plus direction, or
until input 7 goes ON.

Use the m command twice from the motor screen of the configuration editor to reach
the screen where you can enter generic parameter 1. Type an initial single quote to
enter a string.

Special Commands

On faster computers, the Phytron apparently cannot keep up with commands sent by

the computer at full speed. You can slow down the communication between spec and

the Phytron controllers with the following commands:

motor_par(motor , " rdelay" [, value]) — If value is given, sets the delay before
reading a response from the Phytron to value seconds, otherwise returns the

current value. The default value is 0.015.

motor_par(motor , " wdelay" [, value]) — If value is given, sets the delay before
sending a command to the Phytron to value seconds, otherwise returns the
current value. The default value is 0.015.

HARDWARE REFERENCE 271

Only one copy of the rdelay and wdelay parameters is kept for all the Phytron con-

trollers. The motor mnemonic motor can be associated with any of the Phytron con-

trollers. The values for the parameters are saved in the state file, so should only

need to be reset after starting fresh. (See page 57 in the Reference Manual.)

Command pass through is available using the following functions.

motor_par(motor , " send", cmd) — Sends the string cmd to the Phytron channel asso-

ciated with motor .

motor_par(motor , " read", cmd) — Sends the string cmd to the Phytron channel asso-

ciated with motor , as above, and returns a string containing the response.

motor_par(motor , " usend", cmd) — Sends the string cmd to the Phytron controller

associated with motor .

motor_par(motor , " uread", cmd) — Sends the string cmd to the Phytron controller

associated with motor , as above, and returns a string containing the response.

For example,

31.FOURC> print motor_par(tth, "read", "P20R")
240000

32.FOURC>

results in the string "\002XP20R\003\r\n" being sent to the controller. Command
pass through should be used with caution to avoid interfering with the built-in pro-
gramming commands spec sends to the Phytron controllers.

The following command is also available to help with debugging:

motor_par(motor , " dump") — Displays the values of Phytron parameters P01
through P10 and P12 through P17 for the channel associated with motor .

PC DAC as Motor Controller

config file:

PC_DAC_B12 = base_address number_of_motors
PC_DAC_T12 = base_address number_of_motors
PC_DAC_B16 = base_address number_of_motors
PC_DAC_T16 = base_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES 0x300 1 PC DAC 12-Bit D/A (binary output)
YES 0x310 1 PC DAC 12-Bit D/A (two’s complement)
YES 0x320 1 PC DAC 16-Bit D/A (binary output)
YES 0x330 1 PC DAC 16-Bit D/A (two’s complement)

272 HARDWARE REFERENCE

PMC Corporation DCX-100 (Serial and PC Board)

config file:

RS_DCX = device_name baud_rate number_of_motors
PC_DCX = base_address number_of_motors

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty00 9600 4 PMC Corp DCX-100 (Serial)
YES 0xD000 4 PMC Corp DCX-100 (PC Board)

Optional parameters:

MOTPAR:dc_proportional_gain
MOTPAR:dc_derivative_gain
MOTPAR:dc_integral_gain
MOTPAR:dc_integration_limit
MOTPAR:dc_sampling_interval
MOTPAR:dc_following_error
MOTPAR:slop

XIA HSC (Huber Slit Controller)

config file:

RS_XIAHSC = device_name baud_rate number_of_slits

edconf devices screen:

MOTORS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/ttyS0 <> 9600 2 XIA HSC-1 (Serial)

sample edconf motor screen:

Number: <>Controller 0: XIAHSC 1: XIAHSC 2: XIAHSC 3: XIAHSC
Unit/Channel 0/0 0/1 0/2 0/3
Name Slit1 A Slit1 B Slit1 Gap Slit1 Cen
Mnemonic s1a s1b s1g s1c
Steps per degree/mm 400 400 400 400

The X-Ray Instrumentation Associates Huber Slit Controller Model HSC-1 is a spe-
cialized device only used to control Huber slits. The HSC-1 communicates through a
serial port, and several HSC-1 modules can be daisy-chained together and run off a

single serial port. On the device screen of the configuration editor, the NUMfield is set

to the number of HSC-1 modules on the serial port.

The HSC-1 module needs to be sent a calibration command before the HSC-1 motors
can be moved with the normal move commands. The HSC-1 manual describes a

manual calibration procedure. It is also possible to set the controller to the cali-

brated state by sending the "calibrate" command with motor_par() as described

HARDWARE REFERENCE 273

below.

Each HSC-1 contains two motors that control the slit blades. Each blade can be

moved independently. The HSC-1 also implements commands to move both blades

simultaneously to change either the gap or the center-of-the-gap position. spec can

be configured to control just the two blades, just the gap and the center position, or

all four motions. When all four motions are configured, moving either blade changes

the positions reported for gap and center, and moving either the gap or the center

causes the positions reported for each blade to change.

Configuration for the HSC-1 requires the unit/channel field on the second line of the

motor screen of the configuration editor to be filled in according to the following spe-

cial format. The unit number corresponds to successive entries on the devices screen

− each unit is associated with a different serial port. The channel number combines

two values. Each HSC-1 module requires an arbitrary module number N (see below).

This number is multiplied by 10 and added to the channel number that identifies the

motion, as follows: For motor controller N, channel N×10 + 0 corresponds to blade A,
channel N×10 + 1 corresponds to blade B, channel N×10 + 2 corresponds to the gap
and channel N×10 + 3 corresponds to the center of the gap. Channel numbers ending
in 4 through 9 are invalid.

Entering the Serial Number

The module number N (see above) is used only for internal bookkeeping and does not
designate a particular HSC-1 module. Each module is identified by a thirteen-char-
acter unique serial number of the form XIAHSC-B-0014 . The serial number needs to
be entered as a string in the field generic parameter 1 on the optional motor parame-
ter screen of the configuration editor. Use the m command twice from the motor
screen of the configuration editor to reach the screen where you can enter generic pa-

rameter 1. Type an initial single quote to enter a string. Note, the serial number can

also be entered as B-0014 , 0014 or 14 if such a string is sufficient to distinguish

among modules. Also note, the serial number should be entered for just one of the
motors associated with module N.

If the alias feature of the HSC-1 is used, and bit 6 of the control word (see below) is

set for “use alias as ID”, spec requires there be no space characters in the alias. Of

course, the alias, rather than the serial numbers would need to be entered as generic

parameter 1. Setting and changing aliases requires establishing serial communica-
tion with the modules, which may be difficult for novice spec administrators, so CSS

recommends simply using the serial numbers as the modules come from the factory.

274 HARDWARE REFERENCE

Motor Parameters

The steps per deg/mm parameter should be set to 400 for the HSC-1 modules.

Normally, the positions for each blade become more positive as the blade is opened.

However, if the sign of user * dial parameter is negative for either blade (or both), the

motor position will become more negative as the blade opens. The sense of the

center-of-the-gap motion can also be changed by changing the sign of the sign of user

* dial parameter. The gap motion is always positive as the gap increases, though.

The backlash, speed and acceleration parameters in the config file are ignored.

CSS recommends using the calibration feature of the HSC modules to set the zero po-

sitions, rather than using the set macro to set the user offset parameter. That is, it is

best to keep the user and dial positions the same. The chg_dial() function will, in

fact, send the “immediate calibration” command to the controller, but only when set-

ting the position to zero. Note, the gap should be physically at zero before using

set_dial . Use of the standard set_dial macro should be followed by the set macro
to set the user-dial offset back to zero.

The HSC-1 controller stores a number of parameters in nonvolatile memory. spec
will read and display them with the command motor_par(motor , " dump") , where
motor is the mnemonic for any of the motions on the particular HSC-1 module. The
display format is as follows:

1 Outer motion limit (rw) = 4400 (11 mm)
2 Origin position (rw) = 400 (1 mm)
3 Motor A position (ro) = 900 (2.25 mm)
4 Motor B position (ro) = 900 (2.25 mm)
5 Motor step delay (rw) = 200 (roughly 0.272 mm/sec)
6 Gear backlash (rw) = 10 (0.25 mm)
7 Control word (rw) = 142 (0x8e)
8 Escape character (rw) = 33
9 Arbitration priority (rw) = 8

10 Motor A phase (ro) = 0
11 Motor B phase (ro) = 0
12 Calibration complete (ro) = 150
13 EEPROM signature (ro) = 23205
14 EEPROM version (ro) = 4

These parameters can be modified using a command such as

motor_par(motor , " send", "W 6 20")

which changes memory location 6 (gear backlash) to 20.

Special Commands

The motor_par() options implemented for the HSC-1 are as follows:

HARDWARE REFERENCE 275

motor_par(motor , " calibrate") — Sends the “immediate calibration” command to

the unit. The effect is to set the current position of each blade in the controller

to the origin parameter. It also sets spec’s positions for the gap, center and

blades to zero. Thus the gap should physically be at zero before sending this

command.

motor_par(motor , " origin", value) — Sets the controller’s origin parameter (param-

eter 2 of the controller’s memory map) to value . The units of value are steps,

where 400 steps corresponds to 1 mm. The origin parameter determines how

far beyond the zero position each slit blade can be moved. Note, changing the

origin parameter will change the setting of the current position of the blades.

The blades should thus be both at zero before sending the "origin" command,

and a "calibrate" command should be sent immediately afterwards. The fac-

tory default value for origin is 400.

motor_par(motor , " range" [, value]) — Sets the controller’s “outer limit” parameter

(parameter 1 of the controller’s memory map) to value , where the units of
value are steps. This parameter controls how far each blade can be moved.
The factory default value for this parameter is 4400.

motor_par(motor , " step+") or motor_par(motor , " step-") — Moves blade A or blade
B one step in the specified direction. This command can be used to position the
slits whether or not they have been calibrated.

motor_par(motor , " send", cmd) — Sends the string cmd to the HSC-1 unit associated
with motor . The module serial number will be included automatically.

motor_par(motor , " read", cmd) — Sends the string cmd to the HSC-1 unit associated
with motor , as above, and returns a string containing the response.

motor_par(motor , " usend", cmd) — Sends the string cmd to the serial port connected
to the HSC-1 unit associated with motor . The cmd must include the full
HSC-1 command syntax.

motor_par(motor , " uread", cmd) — Sends the string cmd to the serial port connected
to the HSC-1 unit associated with motor , as above, and returns a string con-
taining the response.

276 HARDWARE REFERENCE

Timers and Counters

Timers and Counters

Am9513-based Counter/Timer PC Boards

config file:

PC_AM9513 = base_address number_of_counters

edconf devices screen:

SCALERS DEVICE ADDR <>MODE NUM <>TYPE
YES 0x340 3 Am9513 Counter/Timer PC Boards

edconf scalers screen:

NUMBER NAME MNEMONIC <>DEVICE UNIT CHAN <>USE AS SCALE FACTOR
0 Seconds sec AM9513 0 0 timebase 1000
1 Monitor mon AM9513 0 1 monitor 1
2 Detector det AM9513 0 2 counter 1

The ComputerBoards CIO-CTR05/10/20 cards, the Keithley-Metrabyte Model
CTM-05/10 cards, the Scientific Solutions Labmaster series cards, and similar models
from other manufactures all use the Advanced Micro Devices Am9513 System Tim-
ing Controller chip. The chip contains five 16-bit counters that can be programmed
in a wide range of configurations. spec’s programming uses two of the counters for a
32-bit detector counter, two for a 32-bit monitor counter and one for a 16-bit elapsed
time counter. On boards with two or four chips, the additional chips are each pro-
grammed for two more 32-bit detector counters. You can program the chip through
spec to count to either a time preset using the tcount() function or a monitor-count
preset using mcount() .

You must connect the detector to the input connector pin labeled source 3. Counts re-
ceived from the monitor go to the pin labeled source 5. In addition, you must wire the
connector pin labeled output 1 to the pins gate 2, gate 4 and gate 5. (In the new

Keithley-Metrabyte CTM-05A manual, the source pins are now labeled ACLKIN, the

output pins are now labeled ATIMEROUT, and the gate pins are now labeled
AGATE.)

If it is a two- or four-chip board, the additional detectors are connected to the source 3

and source 5 pins of the chips. In addition, the output 1 from the first chip must be

also connected to gate 2 and gate 4 of the additional chips.

HARDWARE REFERENCE 277

The counter boards are accessed from user level and are polled to determine when

count intervals have elapsed. Thus, interrupts should be disabled on the boards.

You will need to enter the base address of the counter chip in the config file. Note

that for the Labmaster board, the base address of the counter chip is eight plus the

base address of the board itself.

When counting to time, the resolution of the clock depends on the length of the count

interval. The maximum count time is 71.5 minutes. The time base resolution (in sec-

onds) is set according to the following table:

0.00001 for t < 0.6 sec

0.0001 for t < 6 sec

0.001 for t < 60 sec

0.01 for t < 655.35 sec (10.9 min)

0.0655 for t < 71.5 min

When counting to monitor counts, the 0.01 second time base is used, and the value
returned for the time channel will be corrected to account for the rollovers that occur
every 655.36 seconds.

Bi Ra 5302 64-Channel ADC (CAMAC)

config file:

CA_BR5302 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 BR5302 0 BiRa 5302 ADC as counters

scalers screen:

NUMBER NAME MNEMONIC <>DEVICE UNIT CHAN <>USE AS SCALE FACTOR
0 Sensor 1 sen1 BR5302 0 0 counter 2

Up to 64 counters may be configured per ADC module. Each channel is 12-bits. Cur-

rently spec assumes a ±10 Volt range on each channel and scales the readings to that
range. The scale factor from the config file is used to program the gain on the corre-
sponding channel. The values returned by getcounts in the S[] array are scaled by

the gain value. Allowed values for the gain are from 1 to 1024 in powers of two. If an

illegal value is entered, spec uses the next lower legal value.

278 HARDWARE REFERENCE

DSP RTC-018 Real Time Clock (CAMAC)

config file:

CA_RTC018 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 RTC018 DSP RTC-018 Real Time Clock

The Standard Engineering DSP RTC018 Real-Time Clock is wired as follows:

(1) If counting to time, the crystal oscillator output (2
18

Hz) is connected to input

A. If counting to the monitor, the monitor cable from one of the scaler inputs

(usually channel 1) is connected to input A.

(2) The preset out output is connected to start.

(3) If using the DSP QS-450 scaler, connect the busy output to the gate input on
the scaler module. If using the Kinetic Systems 3610 hex scaler, connect the
end output to the inhibit input of the scaler module.

(4) A 1 KHz signal should be fed into a scaler input (normally channel 0).

(5) The detector signal should be fed into a third scaler input (normally channel
2).

DSP QS-450 4-Channel Counter (CAMAC)

config file:

CA_QS450 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 QS450 0 DSP QS-450 4-Channel Counter

DSP TS-201 Dual Timer/Scaler (CAMAC)

config file:

CA_TS201 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 TS201 DSP TS-201 Dual Timer/Scaler

HARDWARE REFERENCE 279

Inel 715 Dual Scaler

config file:

RS_INEL = device_name baud_rate number_of_counters

Inel XRGCI as Timer/Counter

config file:

RS_XRGCI_T = device_name baud_rate number_of_counters

Joer ger VSC16/8 Timer/Counter (VME)

config file:

PC_VSC16T = base_address number_of_counters INTR|POLL

edconf devices screen:

SCALERS DEVICE ADDR <>MODE NUM <>TYPE
YES 0x1000 POLL 8 Joerger VSC16/8 as Timer/Counter
YES 0x1100 POLL 8 Joerger VSC16/8 as Counters

Note, you need to add two zeros to the value of the settings of the six hexadecimal
digits on the module’s address switches to form the A32 address entered in spec’s
configuration editor.

Note also, the ARM IN connector needs to be jumpered to the ARM OUT on the Jo-
erger front panel. If more than one Joerger module is used, the one module desig-
nated as Timer/Counter is the master, and the ARM OUT from that module needs to
be connected to the ARM IN of all the modules.

CSS recommends users order the Joerger scaler with a 1 MHz crystal oscillator

rather than the 10 MHz oscillator normally provided. The 10 MHz oscillator only al-
lows preset counting times of a bit more than seven minutes before the counter over-
flows. The oscillator can also easily be changed in the field. Its only purpose is to

provide the front panel time-base output. In either case, a value corresponding to the

oscillator rate must be entered into the configuration editor on the scalers screen for
the scale factor for the channel corresponding to seconds.

280 HARDWARE REFERENCE

Kinetic Systems 3610 6-Channel 50 MHz Counter (CAMAC)

config file:

CA_KS3610 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 KS3610 0 KS 3610 6-Channel 50 MHz Counter

Kinetic Systems 3640 Used as Counter or Timer (CAMAC)

config file:

CA_KS3640T = slot_number
CA_KS3640C = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 KS3640T KS 3640 Counter used as Timer
2 KS3640C 0 KS 3640 Counter used as Counter

In order to use a 3640 as a timer to gate other 3640 modules, you need to make modi-
fications. The modifications will leave one of the front panel inhibit inputs alone and
convert the other to an inhibit output. One way to do this is to add an LM311 com-
parator IC to the circuit. The negative input (pin 2) of the 311 is connected to the
LAM signal from pin 9 of IC 30 of the 3640 module. The positive input (pin 3) is held
high at about 3.2V through a 1200 ohm over 2200 ohm voltage divider between +5V
and ground. Pins 1 and 4 of the 311 are connected to ground. Pin 8 is connected to
+5V. The output of the 311 (pin ?) is connected to the front panel LIMO connector,
which must have the factory connection cut. In addition, a 2K Ohm resistor is con-
nected between the output and +5V to pull up the output.

In operation, the inhibit inputs of all the 3640s are connected to the inhibit outputs of
all the 3640s. Thus any module can be used as the gate. One module should be fed a

fixed time base, say 1KHz or 10KHz which must come from some external source.

HARDWARE REFERENCE 281

Kinetic Systems 3655 Timing Generator (CAMAC)

config file:

CA_KS3655 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 KS3655 KS 3655 8-Channel Timing Generator

Current users of spec have made the following modifications to the Kinetic Systems

Model 3655 Timing Generators. This timing generator is customarily used with the

Kinetic Systems Model 3610 Hex Scaler. All modifications are made on the compo-

nent side of the board.

(1) Bring the internal 1 KHz timing signal out through the channel 7 front-panel

lemo connector. Do this by first unsoldering the end of the wire that connects

the center pin of the channel 7 lemo connector from the feed through on the
circuit board. Do not unsolder the wire from the connector, as it will be diffi-
cult to solder on a new wire. Instead splice a longer wire to the one already
attached to the connector and solder the other end of that wire to pin 11 of
chip BJ. (Pin 11 is the center pin on the front-panel side of the chip.)

(2) Disconnect the internal inhibit signal from the CAMAC datawa y, and bring it
out through the channel 8 lemo connector. Do this by folding up and/or snip-
ping pin 6 of the socketed 7407 chip in position BX, near the front panel.
Next either fold up pin 3 of chip AU or cut the long trace that leads from that
pin to the datawa y Inhibit connector. Then solder a wire from pin 3 of chip
AU to the bottom lead of resistor R45. The resistor is located near the top-
right corner of the circuit board, and the bottom lead is the one nearest the
letters R45.

Channel 7 is then connected to channel 0 of the scaler module, while Channel 8 is
connected to the inhibit input. The signal from the source of monitor counts is con-
nected, using a tee, to the clock input of the 3655 and the monitor scaler channel

(usually channel 1; the detector is usually channel 2).

282 HARDWARE REFERENCE

Ortec 974/994/995/997 NIM Timers and Counters

config file:

RS_OR9XT = device_name baud_rate number_of_counters
GP_OR9XT = gpib_address number_of_counters
RS_OR9XC = device_name baud_rate number_of_counters
GP_OR9XC = gpib_address number_of_counters
RS_OR9XB = device_name baud_rate number_of_counters
GP_OR9XB = gpib_address number_of_counters

edconf devices screen:

SCALERS DEVICE ADDR <>MODE NUM <>TYPE
YES /dev/tty1 9600 4 Ortec 974/994 Counter/Timer (Serial)
YES 3 4 Ortec 974/994 Counter/Timer (GPIB)
YES /dev/tty2 9600 2 Ortec 974/994/995/997 Counter (Serial)
YES 3 2 Ortec 974/994/995/997 Counter (GPIB)
YES /dev/tty3 9600 3 Ortec 994 Blind Timer/Counter (Serial)
YES 3 3 Ortec 994 Blind Timer/Counter (GPIB)

edconf scalers screen:

NUMBER NAME MNEMONIC <>DEVICE UNIT CHAN <>USE AS SCALE FACTOR
0 Seconds sec OR9XX 0 0 timebase 1000
1 Monitor mon OR9XX 0 1 monitor 1
2 Detector det OR9XX 0 2 counter 1

spec supports the Ortec 974, 994, 995 and 997 counter and counter-timer NIM mod-
ules over both GPIB and RS-232 interfaces. When running the configuration editor,
select from the above descriptions on the device configuration screen to specify which
Ortec modules you are using and how you are using them.

Only one module can be selected as a counter/timer. The 974 module can be assigned
a maximum of four channels. The 994 should be assigned two channels normally and
three channels when used as a blind timer. The 995 has two channels and the 997
has one.

On the scaler configuration screen, choose OR9XXas the controller for all channels as-
sociated with an Ortec module. The unit numbers selected for each channel corre-
spond to the order the Ortec modules appear on the device configuration screen.

When using the 994 as a blind timer, you must select channel number 2 for the time-

base.

Using the 974

The 974 is a four-channel counter/timer having a minimum 0.1 second time base.

You should connect the monitor counts through a tee to the EXT IN connector on the

back of module and to the COUNTER INPUT 2 connector on the front of the module.
Use the COUNTER INPUT 3 and 4 connectors for one or two detector input

HARDWARE REFERENCE 283

channels. Also, make sure that the internal dip switch S-1 has position 6 set to one-

cycle.

Using the 994 as a Normal Timer

The 994 is a two-channel counter/timer with a minimum 0.01 second time base. In

order to obtain accurate elapsed time readings, one counter channel is used to count

time and the other is used to count monitor counts. An additional counter, such as

the 995 or 997 is normally used to accumulate detector counts and is gated by the

994. The monitor count source should be connected to both the IN A and IN B front

panel connectors of the 994 using a tee. The internal jumpers W3 and W4 must both

be set to the TIME position. Jumper W1 must be set to the NORMAL position. Also,

make sure the internal dip switch S-1 has position 6 set to one-cycle and position 7

set to COUNTER/TIMER. Finally, make sure the front panel DWELL switch is

turned all the way off.

Using the 994 as a Blind Timer

In the blind timer mode, the 994 has the monitor counts connected to IN A and detec-
tor counts connected to IN B. The internal jumpers W3 and W4 must both be set to
the COUNTS position. Jumper W1 must be set to the NORMAL position. Also,
make sure the internal dip switch S-1 has position 6 set to one-cycle and position 7
set to COUNTER/TIMER. Finally, make sure the front panel DWELL switch is
turned all the way off.

When operated as a blind timer, spec cannot read back the elapsed time from the
module. Instead, when counting to monitor counts, when counting in powder mode,
when reading the counters during updated counting and when counting is aborted
with a ˆC , the elapsed count time is estimated from the software clock.

Gating

An external enable signal from certain motor controllers may be be fed into the rear-
panel gate BNC input on the 974 or the front panel enable BNC input on the 994 for
precise counter gating in powder-mode scans.

If using a second Ortec module as a counter, you must connect the INTERVAL BNC

connector (rear panel on 974, front panel on 994) to the master GATE on the 974 rear
panel or to the ENABLE or individual GATE inputs on the 994, 995 or 997 modules.

284 HARDWARE REFERENCE

Setting Operational Parameters

The counter_par() function can be used to set various parameters associated with

the Ortec module code in spec. The first argument to counter_par() is a channel

number, although all the commands affect all channels of the associated module, or

all of the Ortec modules, if appropriate.

counter_par(counter , " alarm", mode) — If mode is zero, turns off the more efficient

ALARM mode of operation of the timer, and turns on a slower polled mode. If

mode is one, ALARM mode is turned on. The default operation is for ALARM

mode to be turned on, and there is generally no reason to turn it off.

counter_par(counter , " alarm") — Returns one if ALARM mode is on. Otherwise re-

turns zero.

counter_par(counter , " display", channel) — Sets the counter channel that will be

displayed on the associated module. For the 974 modules, valid values for

channel are 1 to 4. For the the 994 and 995 modules, valid values for channel
are 0 and 1.

counter_par(counter , " display") — Returns the channel number currently being
displayed.

counter_par(counter , " local", mode) — If mode is nonzero, will force the associated
module to go into local mode to allow front panel operation. In addition, the
module will be placed in local mode after each count interval. If mode is zero,
the module will be set to remote mode at the start of the next count interval,
and will not be set back to local mode after counting. When spec starts up, not
switching to local mode is the default behavior to minimize overhead.

counter_par(counter , " local") — Returns zero if the associated module is to be kept
in remote mode. Otherwise, returns one.

Software Timer

config file:

SW_SFTWARE = 1

If no hardware timer is available, the system clock can be used as a timer. Only

counting to time is allowed, as counting to monitor makes no sense. The nominal res-

olution depends on the underlying operating system, although 10 msec is typical.
The accuracy, though, is certainly less than that.

HARDWARE REFERENCE 285

Multichannel Data Acquisition Devices

MCA Devices

DSP 2190 MCS Averager

config file:

CA_DSP2190 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 DSP2190 DSP 2190 MCS Averager

The DSP Technology 2190 Multichannel Scaling Averager consists of a pair of
CAMAC modules: the 2090S Multichannel Scaling module and the 4101 Averaging
Memory module. These two modules must occupy consecutive slots in the CAMAC
crate, with the 2090S in the lower-numbered slot. There is no entry for the 4101
module in the config file.

Functions

The mca_par() function controls the module’s behavior as follows:

mca_par("run") — programs the MCS for the number of bins and sweeps set with the
functions described below, then enables any other counters and starts the aver-
aging process. When the programmed number of sweeps is completed, the
MCS will generate a CAMAC LAM, which will cause the other counters to be

disabled. Use the wait() function to determine when the programmed num-
ber of sweeps are complete.

mca_par("halt") — halts the MCS and disables the other counters.

mca_par("bins") — returns the number of bins in each sweep. (Referred to in the

module documentation as “record length”).

mca_par("bins", value) — sets the number of bins in each sweep to value . The
number of bins can range from 8 to 32,767.

mca_par("sweeps") — returns the number of sweeps to be summed.

mca_par("sweeps", value) — sets the number of sweeps to be summed in the next
scan to value . The number of sweeps can range from 1 to 65,536.

286 HARDWARE REFERENCE

mca_par("sweeps_comp") — returns the number of sweeps completed in the previous

scan. An error message is printed if this function is called while a scan is in

progress.

mca_par("first_ch") — returns the first channel to be read out using mca_get() .

mca_par("first_ch", value) — sets the first channel to be read out using mca_get()
to value .

mca_par("npts") — returns the number of channels to be read out using mca_get() .

mca_par("npts", value) — sets the number of channels to be read out using

mca_get() to value .

Note that the mca_get() function cannot be used while the MCS module is taking

data.

Note that the 4101 doesn’t actually average the sweeps, but only accumulates sums

in each channel. To obtain an average, you must divide the data in each channel by
the number of sweeps. The averaging scan will halt before the programmed number
of sweeps is completed if any of the channels overflow.

The module expects an external trigger and the external trigger is required to begin
each sweep.

LeCroy 2301 interface for qVT MCA

config file:

CA_LC2301 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 LC2301 LeCroy 2301 interface for qVT MCA

Functions

The mca_par() function controls the MCA module’s behavior as follows:

mca_par("clear") — clears the MCA. spec inserts a 1.5 second delay to give the de-
vice time to clear.

mca_par("run") — starts the MCA.

mca_par("halt") — stops the MCA.

mca_par("first_ch") — returns the first channel to be read out.

HARDWARE REFERENCE 287

mca_par("first_ch", value) — sets the first channel to be read out to value .

mca_par("npts") — returns the number of channels to be read out.

mca_par("npts", value) — sets the number of channels to be read out to value . The

maximum number of channels is 1,024.

mca_par("delay") — returns the delay time in seconds that spec sleeps after the

MCA is cleared.

mca_par("delay", value) — sets the time for spec to delay after sending the clear

command. The hardware does require some delay. Some users have reported

1.5 seconds are needed, others report 0.1 seconds is adequate. The default

value is 0.1 seconds.

LeCroy 3512 Spectroscopy ADC

config file:

CA_LC3512 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 LC3512 LeCroy 2301 interface for qVT MCA

LeCroy 3588 Fast Histogram Memory

config file:

CA_LC3588 = slot_number

edconf CAMAC screen:

Slot Module Unit Description
1 LC3588 LeCroy 3588 Fast Histogram Memory

Keithley 2001 Multimeter (GPIB)

config file:

GP_K2001

288 HARDWARE REFERENCE

Oxford/Tennelec/Nucleus PCA Mutliport, PCA II, PCA-3

config file:

GP_PCA_M = gpib_address
PC_PCA3 = base_address
PC_PCAII = device_name base_address INTR|POLL

edconf devices screen:

MCAs DEVICE ADDR <>MODE <>TYPE
YES 7 The Nucleus PCA Multport (GPIB)
YES 0x210 The Nucleus PCA-3 MCA Board
YES 0x1e0 POLL The Nucleus PCA II MCA Board
YES /dev/pca 0x1e0 INTR The Nucleus PCA II MCA Board

The PCA II MCA can be used in either a user-level I/O mode or in an interrupt-driven

mode with the CSS provided driver. The interrupt-driven mode allows dead-time cor-

rections and more accurate counting times. See the drivers/README file in the

spec distribution for information on installing the driver.

If using the interrupt-driven mode, note the following: Apparently, the PCA II doesn’t
trigger an interrupt on some PC mother boards. This problem can be fixed by chang-
ing the value of the resistor labeled R12 on the “PCA2 Memory Card” circuit dia-
gram. This resistor is located near the lower left corner of the main board when
viewed from the component side with the connector fingers pointing down and the in-
put BNC to the right. R12 is about a centimeter down and to the left of the U26 IC.
The circuit diagram indicates the resistor’s value is 2K, however the boards seem to
be shipped with a 1K resistor (brown-black-red stripes). Soldering a second 1K resis-
tor alongside R12 and in parallel electrically will lower the resistance to 0.5K, which
seems to work. (This modification was suggested by the manufacturer.)

Functions

The mca_par() function controls the board’s behavior as follows:

mca_par("clear") — clears the channels of the current group.

mca_par("run") — programs the board with the current parameters and starts acqui-
sition. Note that the tcount() and mcount() functions, as used in the various

counting macros will also start PCA II acquisition.

mca_par("halt") — stops acquisition. Note that the PCA II will also be halted when
the tcount() and mcount() functions, as used in the various counting macros,
complete their count intervals or are aborted.

mca_par("group_size") — returns the current group size.

HARDWARE REFERENCE 289

mca_par("group_size", size) — sets the group size to size . Legal values are 256,

512, 1024, 2048, 4096 and 8192. Values above 1024 may not be legal if insuffi-

cient memory is installed on the board.

mca_par("select_group") — returns the currently active group. Groups are num-

bered starting at zero.

mca_par("select_group", group) — set the active group to group . The number of

possible groups is given by the total number of channels on the board divided

by the group size. If the group passed to the function is greater than the maxi-

mum number of groups (based on the current group size and total number of

channels), the current group selected is group modulus the maximum number

of groups.

mca_par("pha") — selects pulse-height analysis mode on the board.

mca_par("gain") — returns the current gain value used in pulse-height analysis

mode.

mca_par("gain", value) — sets the pulse-height analysis gain to value . Legal val-
ues are 256, 512, 1024, 2048, 4096 and 8192.

mca_par("offset") — returns the current channel offset used in pulse-height analy-
sis mode.

mca_par("offset", value) — sets the pulse-height analysis offset to value . Legal
values are multiples of 256 from 0 to 7936.

mca_par("mcs") — selects multichannel scaling mode on the board.

mca_par("dwell") — returns the current multichannel scaling dwell time.

mca_par("dwell", value) — set the multichannel scaling dwell time. Allowed values
are numbers between 1e-6 and 60 seconds with mantissa of 1, 2, 4 or 8. A
value of -1 selects external dwell. If value isn’t an allowed value, it is rounded

to the nearest allowed value.

mca_par("mode") — returns two if the board is in PHA live-time mode, one if the
board is in PHA real-time mode and zero if the board is in MCS mode.

mca_par("readone", channel) — returns the contents of channel number channel .

mca_par("chan #") — returns the contents of channel number # . The channel number

is with respect to the current group.

mca_par("chan #", value) — sets channel # to value . The channel number is with
respect to the current group.

The following mca_par() functions are only valid when the board is used with the in-

terrupt-driven driver.

290 HARDWARE REFERENCE

mca_par("preset") — in PHA mode, returns the current live-time or real-time preset

value in seconds.

mca_par("preset", value) — in PHA mode, sets the current live-time or real-time

preset value to value seconds.

mca_par("passes") — in MCS mode, returns the number of preset passes.

mca_par("passes", value) — in MCS mode, sets the number of passes to value .

mca_par("live") — in PHA mode, selects live-time counting.

mca_par("real") — in PHA mode, selects real-time counting.

mca_par("dead") — in PHA mode, returns the percent dead time, if accumulating in

live-time mode.

mca_par("elapsed_live") — in PHA live-time mode, returns the elapsed live time in

seconds.

mca_par("elapsed_real") — in PHA mode, returns the elapsed real time in seconds.

mca_par("elapsed_passes") — in MCS mode, returns the elapsed number of passes.

Silena CATO MCA (Serial)

config file:

RS_CATO

Nicomp TC-100 Autocorrelator (Serial)

config file:

RS_TC100 = device_name baud_rate

The Nicomp TC-100 Autocorrelator is selected in the config file in the MCA section of
the devices screen.

Functions

The mca_par() function controls the correlator behavior as follows:

mca_par("clock") — returns the value of the current clock time parameter in mi-
croseconds.

mca_par("clock", value) — sets the clock time parameter. The units for value are

microseconds. Valid clock times are of the form X.XeY where X.X ranges from

HARDWARE REFERENCE 291

0.1 to 1.6 and Y ranges from 0 to 5. Values outside these bounds will be

rounded to the closest allowed value. The new value takes effect on the next

run command.

mca_par("prescale") — returns the value of the prescale factor.

mca_par("prescale", value) — sets the value of the prescale factor. Valid prescale

values are from 1 to 99. The new value takes effect on the next run command.

mca_par("dbase_mode") — returns the state of the baseline mode. A return value of 1

means delayed baseline mode is in effect. A return value of 0 means delayed

baseline mode is off.

mca_par("dbase_mode", 1|0) — sets the state of the baseline mode. A value of 1

turns on delayed-baseline mode. A value of 0 turns it off. The new mode takes

effect on the next run command.

mca_par("dbase") — returns the value of the delayed baseline from the last data ob-

tained using mca_get() .

mca_par("cbase") — returns the value of the calculated baseline from the last data
obtained using mca_get() .

mca_par("tcnts") — returns the value of the total-counts monitor channel from the
last data obtained using mca_get() .

mca_par("pcnts") — returns the value of the total-prescaled-counts monitor channel
from the last data obtained using mca_get() .

mca_par("rtime") — returns the value of the run-time monitor channel from the last
data obtained using mca_get() in seconds.

mca_par("clear") — clears the correlator.

mca_par("run") — sends the current clock-time, prescale and delayed-baseline pa-
rameters to the correlator and starts the correlator. The tcount() and

mcount() functions also start the correlator.

mca_par("halt") — stops the correlator. The correlator is also halted when count in-
tervals specified by tcount() or mcount() have elapsed, or when counting is
aborted using a ˆC .

mca_par("plot") — reads off the real-time data plot from the running correlator. The

data obtained is a very low resolution version of the correlation function.

mca_get(grp , el) — reads the current data from the correlator, and stuffs the data
into the data group grp element el .

292 HARDWARE REFERENCE

REFERENCES

Journal articles describing the various supported X-ray diffractometers are available

in the following references.

The four-circle diffractometer is discussed in

W. R. Busing and H .A. Levy, Acta Cryst. 22, 457 (1967).

There is an error in Equation (48) of the above paper. The last line of the equation

should be ω = atan(−R
23

, R
13

).

Surface diffraction using a four-circle diffractometer is discussed in

S. G. J. Mochrie, J. Appl. Cryst. 21, 1-4 (1988).

The z-axis diffractometer is described in

J. M. Bloch, J. Appl. Cryst 18, 33-36 (1985).

The liquid-surface diffractometer supported by spec is described in

J. Als-Nielsen and P. S. Pershan, Nucl. Instrum. Methods 208, 545 (1983).

A. H. Weiss, M. Deutsch, A. Braslau, B. M. Ocko, and P. S. Pershan, Rev. Sci.

Instrum. 57 (10), 2554 (1986).

Angle calculations and operating modes for a six-circle diffractometer are presented
in

M. Lohmeier and E. Vlieg, J. Appl. Cryst. 26, 706 (1993).

A description of the CAMAC driver can be found in

G. Swislow, A. Braslau and S. G. J. Mochrie, Interrupt-Driven CAMAC Software

for UNIX-Based Computers, AT&T Bell TM# 11115-870817-39.

REFERENCES 293

http://scripts.iucr.org/cgi-bin/paper?a05492
http://scripts.iucr.org/cgi-bin/paper?pii=S0021889887008148
http://scripts.iucr.org/cgi-bin/paper?a25185
http://www.sciencedirect.com/science/article/pii/0167508783911791
http://aip.scitation.org/doi/abs/10.1063/1.1139058
http://aip.scitation.org/doi/abs/10.1063/1.1139058
http://scripts.iucr.org/cgi-bin/paper?pii=S0021889893004868

INDEX

special characters
!! or !-1 to recall previous command, 16, 56
to begin a comment line, 26, 29, 46, 231
* metacharacter, 26, 55, 90, 101, 102, 102
?

as metacharacter, 26, 55, 90, 101, 102, 102
to list edconf commands, 229

[and] to form arrays, 47
\

to continue a line, 55

to introduce special characters, 55
ˆ to substitute in most recent command, 16, 57
_check0 macro, 155, 184
_chk_lim macro, 184
_cleanup2 macro, 189

_cleanup3 macro, 189
_do macro, 160
_loop macro, 190
_mo_loop macro, 168

_move macro, 184, 190
_pmove macro, 184

_scan_on macro, 190
_scanabort macro, 189, 189
{ and }

to delimit block, 18
to group lines as a parse tree, 46

A
A[]

as built-in variable, 63
motor positions in, 19, 29–29, 129, 156, 207

placing values in, 133
a2scan macro, 12, 176

a3scan macro, 12, 176
acos() function, 77, 107
Administrator, spec

dial and user settings set by, 30
manual for, 219–138

news file updated by, 5
AIX, use of spec with, 4
Alpha-Fixed geometry mode, 202–104

Am9513 counter chip, boards that use, 277, 277
an (angle) macro, 165
Angles

dial. See Dial positions (angles), 293
freezing, 204

user. See User positions (angles), 293
Arithmetic operators, 68–70

array command, 77, 101
Array. See also A[] , G[] , mA[] , Q[] , S[] and Z[]

syntax of, 47
Array. See also A[] , G[] , mA[] , Q[] , S[] , S_NA[] and

Z[]
adding built-in to u_hook.c, 225

array_dump() function, 77
array_fit() function, 77
array_op() function, 77

array_pipe() function, 77
array_plot() function, 77
array_read() function, 77
asc() function, 77, 109
ascan macro, 12, 154, 154, 175, 176, 184–88

asin() function, 77, 107
atan() function, 77, 107
atan2() function, 77, 107
awk UNIX utility

script, show.awk, 41–41
to manipulate spec data files, 35

Azimuth-Fixed geometry mode, 202–104

B
Background subtraction in scans.4, 38
bcd() function, 77, 109

beep macro, 158
Beta-Fixed geometry mode, 203–104

Bitwise operators, 14, 68–70
Boolean operators, 14, 68–70
br (Bragg) macro, 9, 154, 173–74

break statement, 22, 72
bug macro, 158

C
C code, adding site-dependent, 225–126
C math functions, 14
ca (calculate) macro, 10, 154, 173–74

ca_cntl() function, 77, 150
ca_fna() function, 77, 150

ca_get() function, 34, 77, 150
ca_put() function, 34, 77, 150
cal (calculate) macro, 173–74

calc() function, 31, 63, 77, 87–87, 209, 225
calcG macro, 209, 214
calcHKL macro, 32, 189
calcL macro, 214–115
CAMAC (IEEE-583) interface, 3, 34

hardware functions, 150–50
slot assignments, 232–133

294 INDEX

cat macro, 157

cd (change directory) macro, 28, 157
cdef() function, 61, 77, 102, 131, 137
chdir() function, 28, 63, 77, 78
chg_dial() function, 30, 77, 135, 238
chg_offset() function, 30, 77, 136, 237–137

ci (calculate inverse) macro, 10, 173
cleanup macro, 25, 189–89
cleanup_once macro, 61
Clock. See counting, 293
close() function, 17, 77, 83, 88, 94

cnt_mne() function, 77, 136
cnt_name() function, 77, 136
cnt_num() function, 77, 136
COLSbuilt-in variable, 63
com (comment) macro, 158

Command files. See File (command), 293
Command recall feature (history), 15–16, 87

syntax for, 56
Commands, spec

listing, 26, 53, 80

types of
built-in, 77–150
diagnostic, 26–27
hardware, 77, 129–50

macro, 77, 101–6
program state, 77

utility, 78–88
comment macro, 7, 154, 155, 162
Comments

in a command file, 26
pound sign to begin, 26, 29, 46, 231

syntax for, 46
config file. See File (configuration), 293
config macro, 158

Configuration editor. See edconf, 293
constant command, 62, 77, 100

Constants
numeric, 45

decimal, 54

floating point, 54
hexadecimal, 54

integer, 54
octal, 54
syntax of, 54

string, 45
escape sequences for, 55
single or double quotation marks as delimiters

for, 55
syntax of, 55

contents program, 40
continue statement, 22, 72
Control key actions

ˆ\ to quit, 5

ˆC
cleanup macro run automatically after, 25,

189–90
control to command level after, 72
files turned off after, 17
to exit edconf program, 231

to halt timer/clock, 12, 137
to interrupt or abort, 10, 12, 13, 60, 163, 175
to reset spec, 46
to stop motors, 10

ˆD to terminate spec session, 61

ˆV to quit, 5
Conversion

between degrees C and kilohms, 182
functions, 77, 109

cos() function, 77, 107

count macro, 170–71
count.mac file, 154
counter_par() function, 77, 136
COUNTERSbuilt-in variable, 63
Counting, 11, 32–33, 136, 170–72

C-PLOT package
spec used with, 35–41

csh UNIX history mechanism, 15, 15
ct (count) macro, 11, 33, 154, 170

Cut points for a four-circle diffractometer, 206
cuts macro, 206, 210

CWDbuilt-in variable, 63
cz (calculate zone) macro, 210–112

D
d (date) macro, 155, 158

d2scan macro, 12, 176
d3scan macro, 12, 176

Data analysis features, 110–28
Data file. See File (data), 293
data_anal() function, 77, 121

data_bop() function, 77, 120
data_dump() function, 77, 123

data_fit() function, 77, 122
data_get() function, 77, 119
data_grp() function, 77, 118, 119, 124

data_info() function, 77, 119
data_nput() function, 77, 120, 121, 123, 123

data_pipe() function, 77, 124, 124–28
data_plot() function, 77, 118, 118, 118, 118, 122
data_put() function, 77, 119, 121, 123, 123

data_read() function, 77, 122
data_uop() function, 77, 120
date() function, 14–15, 77, 78, 158
Date, returning the current, 78
dcb() function, 77, 109

DEBUGbuilt-in variable, 19, 63

INDEX 295

debug macro, 158

def command, 45, 77, 101–6
Default count time, 170
deg() function, 77, 110
delete command, 77, 101
Device names, specifying –131

Diagnostic commands, 26

Dial positions (angles), 8, 28

listed in degrees, 30

returning, 132

setting, 135

dial() function, 77, 132

Diffractometer

angle settings, 5

configuration, maintaining, 229

four-circle

alignment, 198

cut points, 206

functions, 209

geometry for operating, 31

macros, 210–111

modes –103

orientation matrix for, 200–100

reference manual for, 197–116

sectors, 205

spec support of, 22

variables, 207–109

geometry, 31–32

liquid surface

geometry for operating, 31

spec support of, 22

operation, beginner’s guide to, 4–13

two-circle

operated by angles alone, 31

spec support of, 22

z-axis

geometry for operating, 31

spec support of, 22

Directory, spec, 227–128

/usr/lib/spec.d for auxiliary files, 67, 228

/usr/local/lib/spec.d for auxiliary files, 4

changing, 28, 78

data, 164

distribution, 220, 226

help, 27

macros for macro source files, 153, 207

DISPLAY built-in variable, 64

do macro, 26, 154, 160

dofile() function, 25, 77, 90

dscan macro, 12, 35, 176

DSP RTC018 Real-Time Clock, wiring, 279

E
ed macro, 157

edconf program (configuration editor)
to maintain diffractometer configuration, 229
to set dial and user settings, 30, 224

else statement, 21
energy.mac file, 154

eprint command, 77, 93
eprintf() function, 77, 94
Escape sequences for string constants, 55
Executor, 45
exit statement, 72

exp() function, 77, 107
exp10() function, 77, 107
Experiments, automating, 3

F
fabs() function, 77, 107
Fheader macro, 178, 179, 190

File hierarchy, typical spec, 227–128
File(s)

ASCII
command file as, 25

configuration file as, 231
data file as, 22, 35, 192

auxiliary
directory for, 4

command, 25

for least-squares refinement of lattice parame-
ters, 212–116

input, 45
reading from, 90–91, 160
startup, 5, 154

configuration (config)
device numbers set in, 143

installed hardware described in, 150
modifying, 158, 231
motor mnemonics in, 68

permission levels for security of, 237
purpose of, 228

reading, 5, 137
security through motor restrictions in, 238
slot assignments in, 150, 232–133

updating, 158, 226
data

adding scan results to, 179
ASCII, standard format for, 22, 192
controlling output to, 17–18

inserting comments in, 7
opening, 6
selecting, 6
standard format for, 35–36, 192
summary scan information from, 40

296 INDEX

width for columns, 187

distribution, 220
functions for opening and closing, 88
hardware configuration. See File (configuration),

293
help, 27, 81

index for scans.4, 40, 41
log, 17
macro source, 153
news, 5
reflections, 213

settings, 5
preventing changes made in, 237
reading, 137
structure, 231
updating, 61, 226

state, user’s, 88, 226
file.mac file, 154
file_info() function, 77, 79
Filers)

help, 226

Flabel macro, 178, 190

Flow control, 20–22
with break statement, 72
with conditional statements, 71

with continue statement, 72
with exit statement, 72

with for statement, 71
with while statement, 71

fmt_close() function, 77, 124

fmt_read() function, 77, 123
fmt_write() function, 77, 124

for statement, 21, 71
Four-circle diffractometer. See Diffractometer (four-

circle), 293

fourc.src file, 154
Fout macro, 178

fprintf() function, 17, 77, 83, 83, 94
freeze macro, 204, 210
FRESHbuilt-in variable, 65

Ftail macro, 179
Functions

calling user-added, 87–87, 225
types of

built-in, 77–150

CAMAC, 77, 150–50
command file, 77, 90–91
conversion, 77, 109
counting, 77, 137
four-circle, 209

GPIB, 77, 147
hardware, 77, 129–50
keyboard input and formatted output, 77, 88, 91
miscellaneous, 77, 80–88

number, 77, 107

output control, 77, 88
plotting and analysis, 77, 110
regular expression, 108
serial, 77, 143–47
string, 14–15, 77, 107

system, 77, 78
utility, 78–88

G
G[]

built-in variable, 68
geometry parameters stored in, 193, 208, 226

geo_fourc.c file, 207
Geometry

configurations, 173–74
diffractometer, 31–32
four circle, 193–116

get_lim() function, 30, 77, 135
getangles command, 29, 32–32, 156, 177, 189
getcounts command, 67, 77, 136
getenv() function, 77, 79

gethelp() function, 27, 77, 81
getline() function, 62, 77, 90, 91

getval function, 156
getval() function, 77, 86, 92
global command, 18, 77, 100

Global symbols, 18–20, 100
GPIB (IEEE-488) interface, 3, 34

hardware functions, 147
gpib_cntl() function, 77, 147
gpib_get() function, 62, 77, 148

gpib_poll() function, 77, 148
gpib_put() function, 34, 77, 148

gpset macro, 155, 158
Grammar rules

of keywords, operators, and commands, 73–77

of parser, 45
grep utility

for file searching, 153
to manipulate spec data files, 35

GTERMbuilt-in variable, 65

H
h (help) macro, 27, 155, 158
Hardware configuration, 3–5

reconfiguring, 137

selecting, 224

Help facility, 27

help macro, 27, 154, 158

hi (history) macro, 158

history command, 15, 77, 87

History feature. See Command recall feature, 293

INDEX 297

hkcircle macro, 12, 177

hkl.mac file, 154

hklmesh macro, 12, 177

hklscan macro, 12, 35, 177

hkradial macro, 12, 177

hlcircle macro, 177

hlradical macro, 177

HOMEbuilt-in variable, 66

hscan macro, 12–12, 35, 177

I
Identifiers (names)

identifying with whatis() , 82–83

syntax of, 46
if statement, 21, 71
image_get() function, 77, 140
image_par() function, 77, 140
image_put() function, 77, 140

index() function, 15, 77, 107
init_calc() function, 225
initdw macro, 7, 183
initfx macro, 7, 183

initnec macro, 183
initoki macro, 183

Input preprocessor, 45
input() function, 15, 62, 77, 91, 156, 160
Input, translation of keyboard or command file, 45

int() function, 77, 107
Interfaces to user devices. See CAMAC interface,

GPIB interface, and RS-232 interface, 293

J
Joerger SMC Stepper Motor Controller module, 259

K
Keyboard

interrupts, 60–60
Keyboard

reading input from, 91
Keywords

as tokens, 45

listing, 53, 80
Kinetic Systems Model 3655 Timing Generator modifi-

cations, 282
klcircle macro, 177
klradical macro, 177

kscan macro, 12, 35, 177

L
l (list files) macro, 155, 157
Lattice parameters, calculating, 212–115
Least-squares refinement of lattice parameters,

212–116

length() function, 15, 77, 108

less macro, 157
Lexical analyzer, 45
Limits. See Motor (limits), 293
lm macro, 9, 165
local command, 77, 100, 155

log() function, 77, 107
log10() function, 77, 107
Loop

implemented as a macro in scans, 190–91
while or for , 72

lp_plot macro, 172
ls (list files) macro, 157
lscan macro, 12, 177
lscmd command, 26, 53, 55, 77, 80
lsdef command, 77, 102

lsdef macro, 26, 55, 155
lup (lineup) macro, 12, 35, 176

M
mA[] , motor numbers recorded in, 169
mA[] , motor numbers reordered in, 167

Macro(s)
arguments, style in manual for, 6

cleanup, 61–61
defining, 22–23, 101–2
definition

argument substitution in, 23, 105
displaying, 102

listing name and size of, 23–24, 102
printing, 23, 102, 162
removing, 24, 102

library of predefined, 3, 23, 153
listing all currently defined, 23–24, 102

output devices used by, 17
tips for writing, 154–56
types of

basic aliases, 157
basic utility, 158–60

command file, 160
counting, 170–72
four-circle, 210–111

motor, 165–69
plotting, 172–72

printer initialization, 183
reciprocal space, 173–74
saving to output device, 162

scan, 175–79, 184–91
start-up, 163
temperature control, 179–82
utility, 157
zone, 211–112

mail macro, 157

298 INDEX

Manual
administrator’s, 219–138
conventions of type styles in, 6
four-circle reference, 197–116
reference, 45–150
standard macro reference, 153–93

user, 3–41
Math functions, 14, 77, 107
MCA. See Multichannel Analyzers, 293
mca_get() function, 77, 139, 139, 140
mca_par() function, 77, 139, 140

mca_put() function, 77, 140, 140
mca_sel() function, 77, 139
mca_sget() function, 77, 140
mca_spar() function, 77, 140
mca_sput() function, 77, 140

mcount() function, 33, 77, 136, 137, 150
measuretemp macro, 179–81, 191
Memory

usage, showing, 80
memstat command, 77, 80

mesh macro, 12, 176

Metacharacters, ? and * , 26, 55
mi (move incident) macro, 173
mk (move HKL) macro, 154, 173

Motor(s)
controller registers, 29–30

controller types, 233
controlling, 129–36
limits

getting, 135, 165
setting, 30–31, 136, 165–67

software, 9–9
listing information for, 8
macros, 165–69

moving, 7–10, 28–31, 129, 165
parameter

assignment, 233
returning, 130

positions
(HKL) corresponding to set of, 10
displayed on screen, 10

reading, 167
setting, 7–10
storage of, 30

returning the mnemonic or name of, 130, 130
securing from unauthorized use, 237–138
stopping, 10, 129, 189, 260
unusable, 129

motor.mac file, 154

motor_mne() function, 77, 130
motor_name() function, 30, 77, 130
motor_num() function, 77, 130

motor_par() function, 77, 86, 130

MOTORSbuilt-in variable, 66
move_all command, 29, 31, 32, 77, 129, 150, 156, 165
move_cnt command, 77, 129
move_emmacro, 156, 165, 190
Multichannel analyzers (MCAs), 32, 137

mv (move) macro, 10, 154, 165, 167
mvd (move dial) macro, 165
mvr (move relative) macro, 165
mz (move zone) macro, 210–112

N
ned macro, 157

newfile macro, 6, 35, 154, 163
newmac macro, 160
newsample macro, 163
NPTSloop variable, 189
Number

functions, 77, 107
notation, 14, 54

O
off() function, 17, 77, 83, 89, 156
offd (off data file) macro, 17, 158

offp (off printer) macro, 17, 158
offsim (off simulate mode) macro, 158

offt (off tty) macro, 17, 158
Omega Equals Zero geometry mode, 201
Omega-Fixed geometry mode, 201, 204

on() function, 17, 77, 83, 83, 89, 156
ond (on datafile) macro, 17, 158

onp (on printer) macro, 17, 158
onsim (on simulate mode) macro, 158
ont (on tty) macro, 17, 158

open() function, 17, 77, 83, 83, 88, 89
Operators

tokens as, 45
types of

assignment, 70

binary, 69
ternary, 70

unary, 68
or0 macro, 210–110
or1 macro, 210

Orientation matrix, 200–100
Output devices, commands for saving to, 162
Output files, controlling, 88

P
p (print) macro, 14, 155, 158
pa (parameters) macro, 173

Parse tree, 45–46, 72

INDEX 299

Parser, grammar rules of, 45

Pheader macro, 178, 179, 190
Phi-Fixed geometry mode, 202, 204
PI built-in variable, 18, 67
pl (plane) macro, 165
Plabel macro, 178, 179, 190

plot macro, 172, 172, 191
plot.mac file, 154
plot_cntl() function, 77, 116, 123, 123
plot_move() function, 77, 118
plot_range() function, 77, 118, 123

plot_res macro, 154, 172
Plotting

functions, 116–28
macros, 172–72
scans, 13, 41

Points, maximum number of data, 119
port_get() function, 77, 149
port_getw() function, 77, 149
port_put() function, 77, 149
port_putw() function, 77, 149

Pout macro, 178, 179

pow() function, 77, 107
powder.mac file, 154
prcmd macro, 162

prdef command, 23, 26, 55, 77, 102
print command, 14, 62, 77, 89, 93

Printer
controlling output to, 17–18
initialization macros, 183

selecting, 6
setting top-of-form position on, 7

printf() function, 17–18, 22, 77, 89, 93, 169
Printing, formatted, 17–18, 93
Propagation of errors formalism in scans.4, 40

pts (points) macro, 13, 172
pwd (print working directory) macro, 157

Q
Q[]

built-in variable, 68
four-circle coordinate variables stored in, 31, 207

qcomment macro, 155, 162
qdo macro, 26, 154, 160

qdofile() function, 25, 77, 91

R
r2d2.src file, 154
rad() function, 77, 110

rand() function, 77, 107, 107
rdef command, 45, 77, 102–6
read_motors() command, 77
read_motors() function, 63, 129, 133

README files for up-to-date information on
devices supported in the config file, 231

reconfig command, 30, 77, 137
reflex macro, 213
reflex_beg macro, 213
reflex_end macro, 214

Regular expression
functions, 108

Relational operators, 14, 68–70
resume macro, 175, 190
ROWSbuilt-in variable, 67

rplot_res macro, 172
RS-232 (serial) interface, 3, 34

hardware functions, 143–47
RToT_0 macro, 182

S
S[]

accessing contents of scalers through, 32
as built-in variable, 67
loading, 136

S_NA[] , identifying scaler through, 32

savcmd macro, 162
save macro, 163–64

savegeo macro, 163, 164
saveusr macro, 163, 164
savmac macro, 154, 162

savstate command, 77, 88
Scaler channel assignments, 170

Scan header, 13, 35–36, 178, 184, 187
Scan types

absolute-position motor, 12, 176

powder-averaging, 130, 178
reciprocal space, 12–12, 177

relative-position motor, 12, 176
temperature, 178

Scan(s)
aborting, 13, 175, 189
built of macros, 12

grid, 177
invocation syntax, 175
macros, 175–79, 184–91

merging in scans.4, 38
motor, 176, 186

number, 35, 37
output, customizing, 178–79
powder mode, 178

reciprocal space, 176–76, 187
restarting an aborted, 13, 175
retrieving with scans.4, 37
sample output, 12
summary utilities, 40

temperature, 178

300 INDEX

scan_count macro, 191

scan_head macro, 184, 188
scan_loop macro, 190
scan_move macro, 184, 190
scan_plot macro –72, 190
scan_tail macro, 191

scans.4 C-PLOT user function, 36–40
background subtraction with, 38
data columns used by, 39–39
error bars returned by, 40
file conventions, 38

file indexing by, 40
invoking, 36–37
memory for strings and scan numbers, 39
merging scans with, 38
options, 37

retrieving scans with, 37
scans.mac file, 154
scans1.mac file, 154
Sectors for four-circle diffractometers, 205
Security features of spec, 3, 237–138

sed utility to manipulate spec data files, 35

ser_get() function, 34, 62, 77, 144
ser_par() function, 77, 145
ser_put() function, 34, 77, 145

set macro, 8, 30, 154, 165, 166, 237
set_dial macro, 8, 165, 166

set_lim() function, 30, 77, 136, 166, 238
set_lm macro, 9, 31, 154, 165–66
set_sim() function, 77, 137, 159

setaz macro, 210
setlat macro, 210

setmode macro, 210
setmono macro, 210
setplot macro, 13, 163, 172–72, 175

setpowder macro, 178
setscans macro, 163, 175

setsector macro, 210
setslits macro, 163
settemp macro, 179, 179–82

settings file. See File (settings), 293
shell escapes, See Subshells, 293

show_cnts macro, 12, 154, 170–71
showscans program, 41–41
showtemp macro, 179–80

Simulation mode, 137
sin() function, 77, 107
Site-dependent C code, adding, 225–126
site.mac file, 154
sleep() function, 77, 81, 167

slit.mac file, 154
sock_get() function, 140
sock_io() function, 77

Software motor limits, 9–9

spec
as a calculator, 14–15

C-PLOT package used with, 35–41

customized with C code, 225–126

exiting, 5

features, 3

installation, 219–124

internal structure, 45–46

motor security of, 3, 237–138

purpose of, 3, 28

standard scans in, 175

start-up of four-circle version from a UNIX shell, 4

terminating, 5

UNIX utilities used with, 35–41

updating, 226–126

user interface, 14–34

welcome message, 4

SPECbuilt-in variable, 67

spec.mac command file, 25, 154

spec_par() function, 58, 77, 83–87, 88, 91, 130

specadm user account, 219, 220

SPECDbuilt-in variable, 67, 161

Special characters in string constants, listing of, 55

split() function, 77, 108

splot macro, 13, 172–72

splot_res macro, 172

sprintf() function, 15, 77, 108

sqrt() function, 77, 107

srand() function, 77, 107

sscanf() function, 77, 108

start.mac file, 154

startgeo macro, 164

starttemp macro, 163

startup macro, 5–6, 163

stop() function, 77, 139

String

functions, 77, 107, 107

patterns, 55

stty UNIX command, 60

su command, 220

Subshells, spawning, 27–28, 78, 157

substr() function, 15, 77, 108

Sun computers, use of spec with, 4

surf.src file, 154

syms command, 19, 26, 55, 77, 101

sync command, 30, 77, 130

Syntax conventions, 46–77

Syntax error, 45

sz (set zone) macro, 210–112

INDEX 301

T
tan() function, 77, 107

tar command, 221
tcount() function, 32–33, 77, 136, 137, 150
te macro, 179–80
temper.mac file, 154
Temperature control, macros for, 179–82

teramp macro, 179, 182
TERMbuilt-in variable, 67
Ternary operator for spec calculator, 14
test UNIX utility to check for file’s existence, 156

th2th macro, 176

Three Circle geometry mode, 202

Tilde Expansion, 56

time() function, 15, 35, 77, 78

Timer/clock. See also Counting

halted with ˆC , 137

starting, 136

Tokens, input text broken into, 45

tty_cntl() function, 55, 77, 94, 94, 95

tty_fmt() function, 55, 77, 95

tty_move() function, 55, 77, 94, 118

tw (tweak) macro, 11, 165

twoc.mac file, 154

U
u macro, 28, 154
U[]

built-in variable, 68
u_hook.c file, 207, 225

uan macro, 165
ubr macro, 173
uct macro, 12, 154, 170, 171, 175

umk macro, 173
umv (updated-move) macro, 10, 154, 165, 167, 175

umvr macro, 165
undef command, 77, 102
unfreeze macro, 204, 210

unglobal command, 77, 100
UNIX commands

in macro definitions, 27–28
macros for common, 157

UNIX epoch, 78

UNIX utilities, spec used with, 35–41
unix() function, 27–28, 59, 77, 78
Updated activities

counting, 171
moving, 10, 167, 173

plotting, 172–72
scans, 175
setting UPDATE, 167, 173, 175

upl macro, 165

User account for administering spec, 219

USERbuilt-in variable, 67
User positions (angles), 8, 28

listed in degrees, 30
listing, 29
offset between dial angle and, 132

returning, 132
user() function, 77, 135
util.mac file, 154
uwmmacro, 165

V
Variable arguments, style in manual for, 6

Variables
as tokens, 45
attributes

built-in, 62–68
constant, 19, 62, 77, 100

global, 18–19, 62, 77, 100, 163
immutable, 62
local, 62, 77, 100, 155

changing, 19

defined through usage, 18, 62
four-circle, 207–109

nonglobal, 77, 100
limits of, 46

symbols for, listing, 19–20

syms, 77, 101
types

array, 62
number, 62
string, 62

VENIX
quit control character on, 5

VERSIONbuilt-in variable, 67
vi (visual editor) macro, 157
vme_get() function, 77, 149

vme_get32() function, 77, 149
vme_move() function, 77, 149

vme_put() function, 77, 149
vme_put32() function, 77, 149

W
w (wait) macro, 10, 158

wa (where all) macro, 8, 154, 165, 168
wait() function, 33, 77, 83, 85, 137, 138
waitall macro, 158
waitcount macro, 158
waitmove macro, 32, 156, 158

Warning messages, 5
wh macro, 7, 154, 173–74
whatis() function, 21, 77, 82–83, 155
whats macro, 158

302 INDEX

while statement, 21, 71

wm(where motors) macro, 9, 165

X
X rays, counting. See counting, 293

Y
yesno macro, 156, 158
yesno() function, 77, 92

Z
Z[]

built-in variable, 68
four-circle geometry zone mode, 209, 212

zaxis.src file, 154
Zone geometry mode, 202, 204, 211–112

INDEX 303

304 INDEX

spec (1) (CSS Utilities) spec (1)

NAME

spec − X-ray diffractometer control and general data acquisition package

SYNOPSIS

spec [−f h s v y F L S] [−d debug] [−g geometry] [−l outputfile [...]] [−o option=value [...]]
[−p fd pid] [−t tty] [−u user] [−C file [[...] [−D directory] [−N my_name]
[−S [p1] | −S p1-p2] [−T fake_tty]

DESCRIPTION

spec provides a software environment for the operation of an X-ray diffractometer and other
data-acquisition instruments. spec contains a sophisticated command interpreter that uses a
C-like grammar and powerful macro language. spec supports a variety of X-ray diffractome-
ter configurations. The diffractometer geometry is chosen by the program name. Those cur-
rently supported include:

spec − Generic instrument control
fourc − Standard four-circle diffractometer
twoc − Standard two-circle diffractometer
sixc − Six-circle diffractometer (δ, θ, χ, φ, µ, γ)
psic − An S4-D2 six-circle diffractometer
kappa − Kappa diffractometer
surf − Various liquid surface diffractometers
zaxis − Standard z-axis diffractometer

The following options are recognized:

−C file Open the command file file as a start-up command file to be read after the stan-
dard start-up command files, but before the optional file spec.mac in the current di-
rectory, which will always be read last. If there is an error in reading or executing
the commands in these files, spec will jump to the main prompt and not read any
remaining queued command files. Up to 32 files may be specified with multiple −C

options.

−d debug Set the initial value of the debugging variable DEBUGto debug. The available de-
bugging categories are described on page 63 in the Reference Manual. A value of
192 is useful for debugging hardware problems.

−D direc Use direc instead of the compiled-in name (usually /usr/local/lib/spec.d) or the
SPECDenvironment name as the auxiliary file directory.

−f Fresh start. All symbols are set to their default values and the standard macros
are read to establish the default state. Command-line history is reset unless the
−h flag is also present.

−F Clean and fresh start. All symbols are set to their default values but no command
files are read and no macros are defined. Only the built-in commands are avail-
able.

−g geometry

Load macro files and activate geometry calculations for the specified geometry,
while using the configuration files taken from the name by which spec is invoked.

−h Retain history. When starting fresh, reset symbols and macros but keep command-
line history. (Added in spec release 6.05.01.)

MANUAL PAGE 305

−l logfile Specify an output file. Output to the file will begin immediately, so will include the
initial hardware configuration messages. Files will be opened even when starting
fresh. Files opened this way will not be saved as output files in the state file, so
will not be automatically reopened the next time spec starts. (As of spec release
6.04.05.)

−L Do not check or create the state-file lock. Normally, spec prevents more than one
instance of itself from running with the same state file (derived from the user
name plus tty name). With some system configurations, if the state file resides on
an NFS-mounted disk, the file locking doesn’t work well and spec will not start.
This flag overrides the lock test.

−N my_name

Use my_name for setting the interactive prompt and the name of the directory con-
taining the config, settings and state files. Normally the name by which spec is in-
voked is used.

-o option=value

Initialize the spec_par() option to value. The available spec_par() options are
described on page 83 in the Reference Manual.

−p fd pid Indicates that spec input is coming from a pipe from another program. The argu-
ment fd is the file descriptor that spec should use for standard input. The argu-
ment pid is the process ID of the spawning process. If fd is zero, spec will not re-
echo input from the file descriptor to spec’s standard output.

−s Simulation mode. No hardware commands are issued. If started in simulation
mode, simulation mode cannot be turned off without restarting the program.

−S Start spec in server mode listening at the first available port in the default range
of 6510 to 6530.

−S p1 Start spec in server mode listening at the specified port number p1.

−S p1-p2 Start spec in server mode listening on the first available port in the given range.

−t tty Use the current user (or user’s) last saved state from the terminal specified by tty.
The terminal can be specified as −t /dev/tty01 or −t tty01.

−q Indicates that spec should operate in quiet mode and allow output to all devices to
be turned off. This option is only valid when used with the −p option.

−T fake_tty

This option creates a new user state with a name derived from fake_tty, which may
be any name. This option allows you to bypass the state-file lock that prevents
multiple instances of spec to be started by the same user from the same terminal.

−u user Use user’s last saved state as the current user’s initial state. The −t flag will also
be needed if the user was at a different terminal.

−v Print version information and exit.

−y “Yes”, change motor controller registers initially if they disagree with the settings

file. Normally, spec requires you to confirm such a change. This flag would be
useful if you know controller power had been turned off, clearing the hardware
memory.

ENVIRONMENT

spec uses the following environment variables:

SPECD An auxiliary file directory to use instead of the compiled in name.

306 MANUAL PAGE

TERM or term

The text terminal type.

GTERM The graphics terminal type for high-resolution graphics.

HOME The user’s home directory.

SHELL or shell

The shell program to be used for interactive subshells.

DISPLAY

The display name and screen number on which to display the X-window plots.

FILES

(SPECD is the auxiliary file directory, normally /usr/local/lib/spec.d.)
(geom is the first four letters of the name by which spec was invoked.)
(spec is the complete name by which spec was invoked, as in fourc, twoc, etc.)
(If using a virtual terminal, tty is always ttyp# on Linux and ttys00 on macOS.)

./spec.mac Optional private command file always read at start up.

SPECD/site.mac Optional site command file always read at start up.

SPECD/site_f.mac Optional site command file only read when starting fresh.

SPECD/standard.mac Standard macro definitions.

SPECD/geom.mac Geometry macros.

SPECD/spec/geom.mac Possibly more geometry macros.

SPECD/spec/config Hardware configuration file.

SPECD/spec/settings Motor settings file.

SPECD/spec/conf.mac Optional configuration command file always read at start up.

SPECD/spec/userfiles/hdw_lock Spectrometer lock file.

SPECD/spec/userfiles/user_ttyS User’s state file. Uses only first six letters of user and of tty.

SPECD/spec/userfiles/user_ttyH User’s history file.

SPECD/spec/userfiles/user_ttyL User’s lock file.

SPECD/spec/userfiles/user_ttyP User’s data points file.

SPECD/spec_help/∗ Help files.

MANUAL PAGE 307

	MANUAL SUMMARY
	TABLE OF CONTENTS
	PREFACE
	USER MANUAL AND TUTORIALS
	Introduction
	Beginner's Guide to Diffractometer Operation
	Starting Up
	Using the Printer and Data Files
	Setting Motor Positions and Moving Motors
	Counting
	Scans

	Introduction To the �Hs+1specs-1�P User Interface
	�Hs+1specs-1�P as a Calculator
	Command Recall (History)
	Controlling Output To the Printer and Data Files
	Using Variables
	Flow Control
	Macro Facility
	Command Files
	Status and Help
	�1s-2UNIXs+2�P Commands
	Moving Motors
	Diffractometer Geometry
	Counting
	CAMAC, GPIB and Serial

	Using �Hs+1specs-1�P with �Hs-1C(hyPLOTs+1�P and Other �1s-2UNIXs+2�P Utilities
	Standard Data File Format
	Scans.4
	Retrieving Scans By Scan Number or File Position Number
	Merging Scans and Background Subtraction
	File Conventions
	Data Columns
	More Details
	The Index File
	Normalization and Error Bars

	Contents
	Showscans

	REFERENCE MANUAL
	Introduction
	Internal Structure Of �Hs+1specs-1�P
	Syntax Description
	Comments
	Doc Strings
	Identifiers
	Arrays
	Associative Arrays
	Data Arrays

	Keywords
	Numeric Constants
	String Constants
	String Patterns and Wild Cards
	Tilde Expansion
	Command Recall (History)
	Starting Up
	Keyboard Interrupts
	Cleanup Macros
	Exiting
	Variables
	Built-In Variables

	Operators
	Unary Operators
	Indirection Operator
	Binary Operators
	Assignment Operators
	Ternary Operator

	Flow Control
	Conditional Statement
	While Statement
	For Statement
	Break Statement
	Continue Statement
	Exit Statement

	Grammar Rules

	Built-In Functions and Commands
	Utility Functions and Commands
	System Functions
	Miscellaneous

	Keyboard and File Input, Screen and File Output
	Controlling Output Files
	Log Files (log, dlog, elog, tlog)
	Reading From Files
	Keyboard Input
	Text Output

	Variables
	Macros
	Built-In Commands
	Built-In Macro Names
	Macro Arguments
	Macro Functions

	String and Number Functions
	Math Functions
	String Functions
	Regular Expression Functions
	Conversion Functions

	Data Handling and Plotting Functions
	Binary Input/Output
	The Data-Pipe Facility

	Client/Server Functions
	Hardware Functions and Commands
	Controlling Motors
	Counting
	Miscellaneous
	MCA (1D) Data Acquisition
	Image (2D) Data Acquisition
	Socket Functions
	RS-232 Serial Interfaces
	GPIB (IEEE-488) Hardware Functions
	VME Hardware Functions
	PC Port I/O
	CAMAC (IEEE-583) Hardware Functions

	STANDARD MACRO GUIDE
	Introduction
	Some Tips
	Utility Macros
	�1s-2UNIXs+2�P Commands
	Basic Aliases
	Basic Utility Macros
	Reading From Command Files
	Saving To Output Devices

	Start-up Macros
	Motor Macros
	Counting Macros
	Plotting Macros
	Reciprocal Space Macros
	Scan Macros
	Scan Miscellany
	Motor Scans
	Basic Reciprocal Space Scans
	Special Reciprocal Space Scans
	Temperature Scans
	Powder Mode
	Customizing Scan Output

	Temperature Control Macros
	Printer Initialization Macros
	The Scan Macros In Detail
	Standard Data-File Format

	FOUR-CIRCLE REFERENCE
	Introduction
	Diffractometer Alignment
	Orientation Matrix
	Four-Circle Modes
	Freezing Angles
	Sectors
	Cut Points
	Four-Circle Files
	Four-Circle Variables
	Four-Circle Functions
	Four-Circle Macros
	Zone Macros
	Least-Squares Refinement of Lattice Parameters

	ADMINISTRATOR'S GUIDE
	Introduction
	Quick Install
	Steps For Installing �Hs+1specs-1�P
	Extracting the Distribution
	Installing the �Hs+1specs-1�P Program Files
	Selecting the Hardware Configuration
	Adding Site-Dependent Help Files
	Adding Site-Dependent C Code

	Updating �Hs+1specs-1�P
	Installed Files
	File Hierarchy
	Accessing Protected I/O Ports On PC Platforms Running �2linux�P
	The Configuration Editor
	The Settings File
	The Config File
	CAMAC Slots
	Motor Parameters
	Linked Configurations

	Security Issues
	Extra Protection

	HARDWARE REFERENCE
	Introduction
	Interface Controllers and General Input/Output
	CAMAC Controllers
	CAMAC Controllers That Use �Hs+1specs-1�P Drivers
	DSP 6001/6002 CAMAC With No Driver
	Kinetic Systems 3988 GPIB To CAMAC
	DSP CC-488 GPIB To CAMAC
	Jorway 73A SCSI To CAMAC
	Kinetic Systems 3929 SCSI To CAMAC
	Kinetic Systems CAMAC Software

	GPIB Controllers
	National Instruments GPIB with National Instruments Drivers
	National Instruments GPIB with �2cib.o�P
	National Instruments GPIB on linux
	National Instruments GPIB-ENET
	National Instruments PCII GPIB on PC UNIX System V Platforms
	National Instruments AT-GPIB on PC UNIX System V Platforms
	National Instruments GPIB on SCO UNIX and IBM AIX Platforms
	National Instruments SB-GPIB Ver 1.3 on SunOS 4.x Platforms
	National Instruments GPIB 1024-1S on SunOS 4.x Platforms
	National Instruments SB-GPIB Ver 2.1 on SunOS 4.x Platforms
	National Instruments GPIB on DEC MicroVax
	HP SICL GPIB On HP Platforms
	IOtech SCSI To GPIB On HP Platforms
	IOtech SCSI To GPIB on Sun Platforms
	Scientific Solutions IEEE-488 on PC Platforms
	Kinetic Systems 3388 CAMAC-To-GPIB Module

	VME Controllers
	National Instruments VME with National Instruments Drivers
	Bit 3 Model 403 ISA-VME
	Bit 3 Model 616/617 PCI-VME
	Bit 3 Model 487-1 with Model 933 Driver Software
	Bit 3 Model 466-1/467-1 with Model 944 Driver Software

	Serial (RS-232C) Ports
	Generalized CAMAC I/O
	PC Port Input/Output

	Motor Controllers
	Motor Controllers
	Advanced Control System MCB (GPIB and Serial)
	Advanced Control System MCU-2 (Serial)
	Compumotor 3000 (GPIB and Serial)
	Compumotor 4000 (GPIB and Serial)
	Compumotor AX (Serial)
	Compumotor SX (Serial)
	DSP E250 12-Bit DAC as Motor Controller (CAMAC)
	DSP E500 Stepper Motor Controller (CAMAC)
	Huber SMC 9000 (GPIB)
	Inel XRGCI as Motor Controller (Serial)
	Joerger SMC Stepper Motor Controllers (CAMAC)
	Klinger MC-4 Stepping Motor Controller
	Kinetic Systems 3112 12-Bit DAC as Motor Controller (CAMAC)
	Micro-Controle IP28 (GPIB and Serial)
	MicroControle SIX19 (Serial)
	Missouri University Research Reactor Motor Controller (GPIB)
	New Focus Model 8732 Picomotor Controller (GPIB and Serial)
	Newport (Klinger) Motion Master 2000/3000 (GPIB, Serial and PC Board)
	Newport Motion Master 4000/4005 (GPIB and Serial)
	NSLS Brand MMC32 Controller (GPIB)
	Oregon Micro Systems (PC Board and VME)
	Oriel Encoder Mike Controller 18011 (Serial)
	Oriel Encoder Mike Controller 18092 (Serial)
	Phytron IXE(*a-C (GPIB and Serial)
	PC DAC as Motor Controller
	PMC Corporation DCX-100 (Serial and PC Board)
	XIA HSC (Huber Slit Controller)

	Timers and Counters
	Timers and Counters
	Am9513-based Counter/Timer PC Boards
	Bi Ra 5302 64-Channel ADC (CAMAC)
	DSP RTC-018 Real Time Clock (CAMAC)
	DSP QS-450 4-Channel Counter (CAMAC)
	DSP TS-201 Dual Timer/Scaler (CAMAC)
	Inel 715 Dual Scaler
	Inel XRGCI as Timer/Counter
	Joerger VSC16/8 Timer/Counter (VME)
	Kinetic Systems 3610 6-Channel 50 MHz Counter (CAMAC)
	Kinetic Systems 3640 Used as Counter or Timer (CAMAC)
	Kinetic Systems 3655 Timing Generator (CAMAC)
	Ortec 974/994/995/997 NIM Timers and Counters
	Software Timer

	Multichannel Data Acquisition Devices
	MCA Devices
	DSP 2190 MCS Averager
	LeCroy 2301 interface for qVT MCA
	LeCroy 3512 Spectroscopy ADC
	LeCroy 3588 Fast Histogram Memory
	Keithley 2001 Multimeter (GPIB)
	Oxford/Tennelec/Nucleus PCA Mutliport, PCA II, PCA-3
	Silena CATO MCA (Serial)
	Nicomp TC-100 Autocorrelator (Serial)

	REFERENCES
	INDEX
	MANUAL PAGE

